Managing Versions of Web Documents in a Transaction-time Web Server

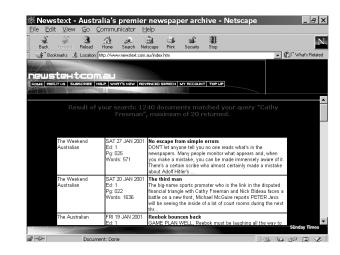
Curtis Dyreson, Hui-Ling Lin, and Yingxia Wang School of E.E. and Computer Science Washington State University USA

WWW 2004 Conference

Motivation

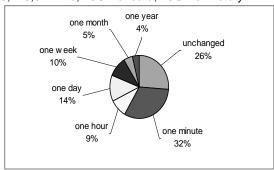
Outline

- Motivation
- Server extension
 - History of a site
 - Time travel queries
- Experiments
 - Turnaround time
 - Disk/memory usage


Motivation

- Sep. 25, 2000 Cathy Freeman won the 400m
- Sep. 26, 2000, article in The Australian
- URL of the on-line newspaper (sports section) www.theaustralian.com.au/sports.html

Queries


- URL of the on-line newspaper (sports section) www.theaustralian.com.au/sports.html
- URL understood by transaction-time server www.theaustralian.com.au/sports.html?26-Sep-2000

Motivation

- · Historical access
 - Entertainment, government, educational, financial
 - Time travel queries
 - Timeslice
 - · Next/previous versions
 - Document history
 - Show changes
 - HTMLdiff, XMLdiff (AT&T Bell Labs)
 - Statistics on frequency of page update
 - Ntoulas, Cho, and Olston (WWW 2004)
- Archives
 - A warehouse for old pages
 - No standard interface

eecs.wsu.edu Website

- 1 year study
- · 20,240,822 hits, 10GB of data, 20GB of history

How long before resource was updated?

Related Work

- Web Archiving
 - The Internet Archive (www.archive.org)
 - Wayback machine
 - iPROXY
 - * Rao, Chen, and Chen (Middleware Symposium, 2000)
 - Author-requested archiving
 - Douglis (Workshop on Web-site Evolution, 1999)
- XML
 - Change detection
 - Marian, Abiteboul, Cobena, Mignet (VLDB 2001)
 - Buttler, Rocco, and Liu (WWW 2004)
 - Transaction-time querying of XML with TTXPath
 - Dyreson (WISE, 2001)
- Fabio Grandi's temporal web bibliography

A Transaction-time Web Server

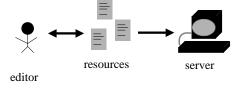
Transaction Time in Databases

• Interval representation - DBMS maintained

		Transaction Time	
Stock	Price	start	end
IBM	34	Sep/8/2002	now
Microsoft	72	Sep/9/2002	now
TriGEO	54	Sep/4/2002	Sep/8/2002
TriGEO	105	Sep/9/2002	now

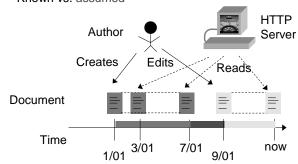
• On Sep/9/2002

DELETE FROM Stocks WHERE Stock='TriGEO'; INSERT INTO Stocks ('TriGEO', '105');


 Schema evolution (e.g., Roddick and Snodgrass, TSQL2, 1995)

Web vs. Database

· Must use DBMS to modify data

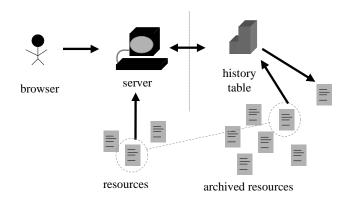


On the web, updates are independent of server

An Observant System

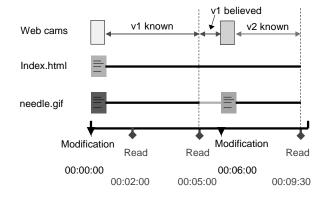
- · Each edit creates a version
- · Read-only (read-mostly) access to the data
- Known vs. assumed

Observant Systems


- Lots of Observant Systems
 - Web browsers, HTTP servers, portals, search engines
- HTML/XML
 - No temporal semantics
 - Few user-defined timestamps
- Goal: Implement transaction time in an Observant System
 - No transactions
 - No explicit timestamps in data
 - Implicit
 - · System time of observer
 - File modification time

Constraints on Our Design

- · Backwards compatible
 - Minimal changes to HTML, HTTP, servers, browsers
 - No changes to legacy pages
 - No changes to page maintenance culture
- Coexistence compatible
 - Partial migration
- Simplify problem
 - Ignore dynamic pages
 - ASP
 - CGI-bin
 - Ignore processing changes
 - Javascript bug fixes

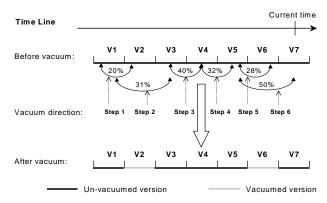

Lazy Transactions

· Perform transaction during HTTP get

Computing Resource Versions

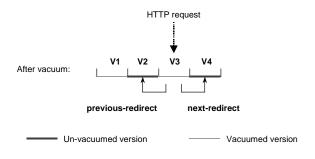
Known vs. believed versions

TTQueries

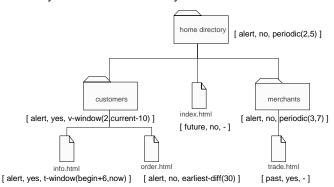

- Syntax: a.htm?< q_{tt} >,< p_{tt} >
 - A selection query(q_{tt}) and restructuring query(p_{tt})
- Examples
 - Show current version, but links are to previous a.htm?now,pre
 - Show all versions of seattle.html a.htm?history
 - Grab version on 26 April, links are to current a.htm?26-Apr-2002/02:15:04, now
 - Two versions ago a.htm?pre.pre

Vacuuming

- Remove versions
 - Vacuuming policies
 - time-window, version-window, periodic, percent-difference
 - e.g., Vacuum versions that differ by less than 5%
 - Never vacuum the current version
- Remove history
 - Obliteration
- Query repair


Percent-difference Vacuuming Policy

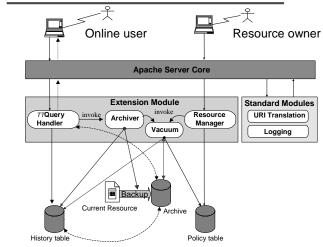
• Vacuum versions less than 30% difference


Query Repair

- · What happens on query to vacuumed version?
 - E.g., redirect to previous/next "good" version

Vacuuming Policy Tree

· Policy can be set for directory or document

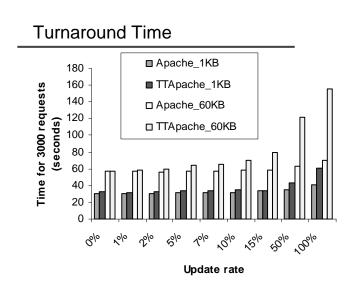


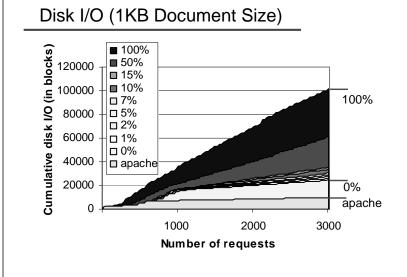
Experiments

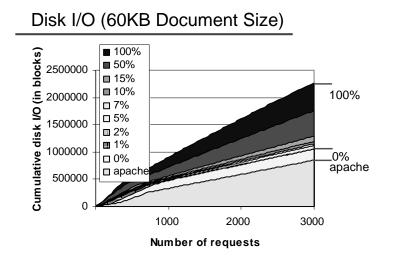
Implementation

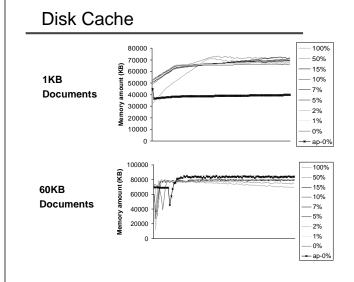
- Apache
 - Popular, open source server
 - Pre-forking model (child processes handle requests)
 - DB must have concurrency control
 - "inner-loop" additional disk I/O on every request
- BerkeleyDB

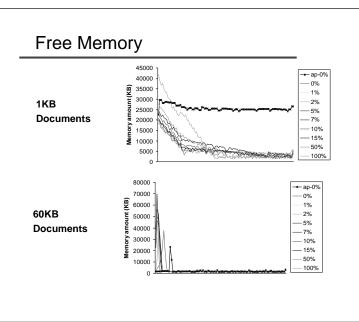
TTApache Architecture

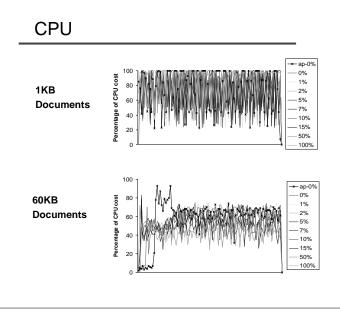


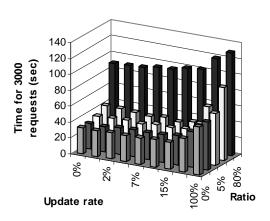

Cost


- Time
 - Overhead on I/O
 - Minimum One DB read and write
 - Maximum Many DB reads and writes, many file copies
 - Milliseconds are important (disk read approx. 11msec)
- Space
 - Disks are cheap
 - Vacuuming
 - Store diffs
 - RCS


Experiments


- Factors
 - Page size (1KB vs. 60KB)
 - Update rate (0%, 1%, 2%, 5%, 7%, 10%, 15%, 50%, 100%)
 - Ratio of TTQueries (0%, 1%, 5%, 20%, 80%)
 - "pre", "a timestamp", "pre.pre.pre", "history"
- Design of the experiments
 - Step1. Start TTApache
 - Step2. Pre-fetch 3000 pages
 - Step3. Perform multiple runs
 - Measure turnaround times (3000 requests/run)
 - Step4. Shut down TTApache





Turnaround Time (TTQuery)

Summary of Results

- · Little overhead for low update rates
 - No significant difference for rates under 5%
 - EECS web site .009%
- A large page size is a significant factor.
 - Increases memory use and disk I/O
 - EECS web site
 - 71% less than 1K
 - . 23% 1K to 10K
 - . 4% above 10K
 - TTAPache "stress test"
 - 60KB page at 100% update => 20 requests per second
 - EECS web site
 - . 0.68 requests per second (on average)
 - EECS 73% of peaks > 20

Conclusions

- Local server extension
 - Archives documents
 - Supports
 - Time travel queries
 - Link rewriting
 - Vacuuming
 - · Obliteration and forwarding of resource histories
 - Distinguishes known vs. assumed versions
- Compatible
 - HTTP, HTML, URLs
 - Page maintenance "culture"
- Cost
 - Modest overhead