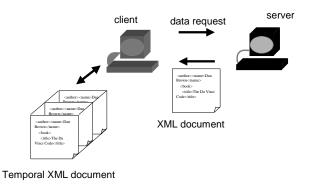
Schema-less, Semantics-based Change Detection for XML Documents

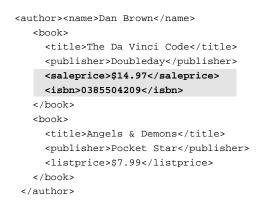
Shuohao Zhang

Curtis Dyreson School of E.E. and Computer Science Washington State University


Richard T. Snodgrass Department of Computer Science University of Arizona WISE 2004 - Brisbane

Outline

- Motivation
- Related work
- Our technique
- Experiments
- Conclusion


Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass

Target Application

Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass

Authors: Version 2

Authors : Version 1

<author><name>Dan Brown</name> <book> <title>The Da Vinci Code</title> <publisher>Doubleday</publisher> <listprice>\$24.95</listprice> </book> <book> <title>Angels & Demons</title> <publisher>Pocket Star</publisher> </book> </author>

Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass

Change Detection

- Edit script
- One deletion
 - <listprice>\$24.95</listprice>
- Two insertions
 <saleprice>\$14.97</saleprice>
 <isbn>0385504209</isbn>

 (isbn>0385504209
- Cost is # of inserts/updates/deletes

Authors: Version 3 (Very Different Struc.)

	<publisher>Doubleday</publisher>
<author></author>	<book></book>
<name>Dan Brown</name>	<title>The Da Vinci Code</title>
<book></book>	<author></author>
<title>The Da Vinci Code</td><td><name>Dan Brown</name></td></tr><tr><td></title>	
<publisher>Doubleday</publisher>	<listprice>\$24.95</listprice>
stprice>\$24.95	
	<pre><pre>cpublisher>Pocket Star</pre></pre>
	<book></book>
<book></book>	<title>Angels & Demons</title>
<title>Angels & Demons</td><td><author></td></tr><tr><td></title>	<name>Dan Brown</name>
<publisher>Pocket Star</publisher>	
	<listprice>\$7.99</listprice>

Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass

Related Work

- Text document change detection
 - * D-band Myers, Algorithmica, 1986
 - CVS
- Tree matching (Structure-based change detection)
 - Tree-correction Wagner and Fischer. JACM, 1974
 - Ordered Chawathe and Garcia-Molina, SIGMOD 1996
 - Unordered tree is NP-hard Zhang et al., IPL 1992
 - + HTML Douglis and Ball, USENIX 1996
 - * XML Yang et al., Niagra project at UWisconsin 2004
 - * XML G. Cobéna, S. Abiteboul, A. Marian. ICDE, 2002 (Xyleme)
- Problem is different: Same information, very different structure

Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass

Outline

- Motivation
- Related work
- Our technique
- Experiments
- Conclusion

Our Approach

- Maxim: Information that *identifies* an element is conserved across changes to the element.
- Two step strategy
 - 1. Compute identifiers (assumption is no schema)
 - 2. Match an element based on identifying information

Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass

Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass

Data Model Node Semantics

• Are x₁ and x₂ the same or different?

- Axiom I: Nodes that are structurally different (modulo reordering) are semantically different.
- If the blue triangles are different, then semantically different.

Data Model Node Semantics

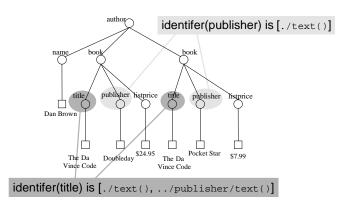
 x₁ and x₂ have the same structure, but are they duplicates or different?

- Axiom II: Nodes that are structurally identical are semantically identical if and only if their respective parents are semantically identical, or if they are both root nodes.
- If *p*₁ and *p*₂ are semantically different, then *x*₁ and *x*₂, though structural duplicates, are (contextually) different

Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass

Identifiers

• Type is list of labels on path to element



- Type is p.x
- Abbreviated type, last label, e.g., x
- A type identifier is a list of XPath expressions
- For any pair of type *T* nodes, *x* and *y* are semantically different if and only if

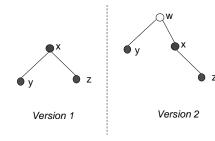
 $Eval(x, identifier(T)) \neq Eval(y, identifier(T)).$

Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass

Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass

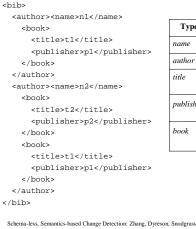
Computing Identifiers

- Bottom up
 - Leaf is floor 0
- For each type at floor k
 - Choose identifier from among children test
 For type p, try identifier(p.x)



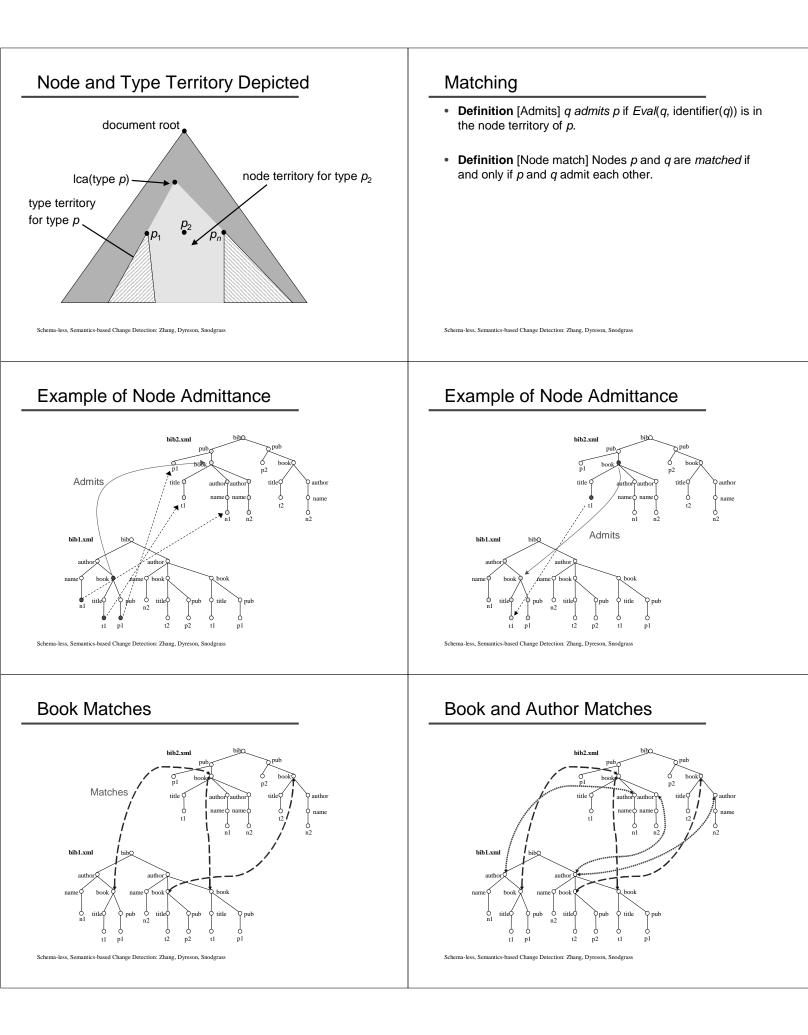
- If p has structural duplicates then there will be no identifier.
 Need parent's identifier in combination with identifier(p.x)
- Time complexity is O(n*log(n))
- Space is O(n)

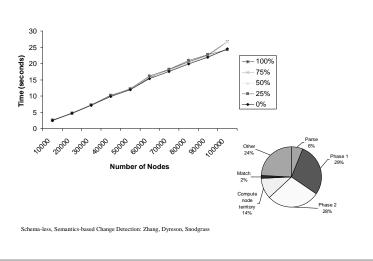
Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass

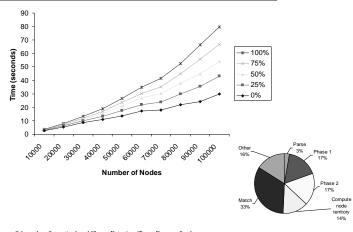

Semantic Change Detection

- Assumption: Identifying information is preserved across document changes
- · Problem is structure could change
 - Identifiers depend on structure

Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass


Authors and the Books They've Written


Туре	Identifier
name	(text())
author	(name/text())
title	<pre>(//author/name/text(), text())</pre>
publisher	<pre>(//author/name/text(), text())</pre>
book	<pre>(/author/name/text(), title/text())</pre>


Node and Type Territory

- Solution: Identifying information will remain nearby
- **Definition** [Type Territory] The territory of a type *T* is the set of all text nodes that are descendants of the least common ancestor of all of the type *T* nodes.
- Within the type territory is the territory controlled by individual nodes of that type.
- **Definition** [Node Territory] The territory of a type *T* node *p* is the type territory of *T* excluding all text nodes that are descendants of other type *T* nodes.

Nature of Changes	Outline
 Complexity of technique Time O(n*log(n)+p*log(p)) where n and p are # of nodes in early and later versions Space O(n+p) Each match creates an association Different structure -> new version of "same" node Same structure -> extend lifetime of old version Unassociated nodes In early version -> deleted from later version In later version -> inserted into later version 	 Motivation Related work Our technique Experiments Conclusion
Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass	Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass
Experiments	Experiments (continued)
 Goals How does technique scale? Examine cases where structural matching has problems Environment PC with hyperthreaded 2.8GHZ CPU 2GB SDRAM Windows XP Java (jdk 1.4.2) Isolated for experiments 	 Methodology Choose first XQuery use case – author/publisher/book Randomly generate documents increasing in size, from 10,000 to 100,000 elements Test 0% to 100% match percentage Measure time Average over several runs Experiment 1: permute ordering of elements, but same structure Structural change detection based on ordered trees would fail Experiment 2: same information, different structure Structural change detection can't match
Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass	Schema-less, Semantics-based Change Detection: Zhang, Dyreson, Snodgrass
Match Different Orderings	Match Different Structures

Conclusion

- New change detection technique
 - Problem: same information, very different structure
 - Information that identifies an element is conserved across changes
- Some experiments
 - Practical for low-update, in-memory systems
 - Target application: Temporal XML databases
- Future work
 - Integrate with Apache web server (HTML-based, Dyreson et al. WWW 2004)
 - Integrate with temporal query languages (tauXQuery, Gao and Snodgrass, VLDB 2003; 77XPath, Dyreson, WISE 2001)
 - Utilize schema keys
 - Persistence