
Proceedingsof theSecond International Conference onWebInformationSystemsEngineering(WISE2001), Kyoto, Japan,
December2001,pp. 193-202. Copyright c

�
IEEEComputer Press,2001. All rightsreserved.

Observing Transaction-timeSemanticswith TTXPath

CurtisE. Dyreson
Schoolof ElectricalEngineeringandComputerScience

WashingtonStateUniversity, USA
cdyreson@eecs.wsu.edu

Abstract

Transactiontimeis thetimeofdatabasetransactionsthat
create, modify, or destroy facts. It is usedto record when
factsexist in a database. Accounting for transaction time
is essentialto supporting audit queriesthat delveinto past
databasestatesand differential queriesthat pinpoint dif-
ferencesbetweentwo states.In a webcontext, transaction
time is a problematic concept becausethere are no trans-
actions. Browsers and other consumers of web data can
observesnapshotsof resourceslikeXML documentsbut are
rarelyactiveparticipantsin their creationor destruction.

This paper presentsthe TTXPath data modeland query
language. TTXPathextendsXPathwith support for transac-
tion time. XPath is a specification language for locations
in an XML document.It servesasthebasisfor XML query
languageslike XSLT and XQuery. XPath hasno temporal
semantics.To constructa TTXPathdatamodel,snapshotsof
an XML document are obtained over time by an observer.
Thesnapshots are thenmerged and transactiontimesare
associatedwith each edge and node. The TTXPath query
language extendsXPath with a transaction-timeaxisto en-
ablea queryto accesspastor future states,andwith con-
structsto extract and compare times. TTXPath maximally
reusesXPath hencethe changes needed to support trans-
action time are minimal and TTXPath is fully backwards-
compatiblewith XPath.

1. Intr oduction

The World-Wide Web (“web”) is the largest,most fre-
quently used,text-basedinformation resource. The web
currently has several million servers providing accessto
several billion documents. Many of these documents
conform to the HyperText Markup Language (HTML),
but in the near future, the ExtensibleMarkup Language
(XML) [32] is expectedto replaceHTML asthe mark-up
languageof choicefor webdocuments[3, 11]. XML is also
expectedto becomeanimportant languagefor webdataex-

change.
Thedatabaseresearchcommunity hasbeenactive in ap-

plying databaseconcepts and techniques to the web [14].
Theexpectedgrowth of dataencodedin XML hasinspired
severalnew datamodelsandquery languages. Semistruc-
turedandunstructureddatamodels,basedon graph repre-
sentationsof data,have beenadvocatedfor managing and
querying datathat lacks a rigid schema,suchas dataen-
codedin XML [1, 6, 7, 14, 20, 24, 28]. Previous research
hasshown thatmuchof XML canbemappedto andfrom a
semistructureddatamodel[28].

Over the past two decadesthere has beena substan-
tial amount of researchon extending databasesto support
time [17, 21, 27, 26, 29]. This researchhas led to the
development of transaction-time databases[19, 22, 25].
Transaction time is thetimewhena particularfactis stored
in a databaseand considered current, i.e., the time be-
tweenwhen it is insertedanddeleted(an update is mod-
eledasa deletionfollowed by an insertion). Very briefly,
a transaction-time databasestoresall of thepaststatesof a
databaseandallowsqueries,calledtransactiontimeslice,to
retrieve any desiredpaststate.

This paperpresentsan XML query languageand data
model thatsupportstransaction timecalledTTXPath.There
are many proposedquery languagesfor XML [1, 4, 20,
28, 30, 31, 33, 34]. All of theseproposalslack tempo-
ral semantics. We have previously describedand imple-
mentedan SQL-like query languagecalledAUCQL for a
semistructured databasethat includessupport for transac-
tion time [13]. In this paperwe extend XPath [30] with
concepts borrowed from AUCQL. XPath is a specification
languagefor locationsin an XML document. It servesas
the basisfor XML query languageslike XSLT [31] and
XQuery[34].

Transactiontime is a problematicconcept for the web
becausethereareno transactions. Browsersandothercon-
sumersof webdatahave readaccessto data,but rarelycan
insert,update,or deletedata. Updatesto web dataare ir-
regular, ad-hoc, andhiddenfrom readers of that data. To
remaincurrent with a constantlyevolving datasource, the

1

datais occasionally re-read and replacesor addsto a lo-
cal datastore. We call sucha readeran observant system.
An observant systemis a systemthatcanobserve databut
(generally) cannot modify it. A web browser is an obser-
vant system.It readsdatafrom thewebbut cannot update
that data(HTTP PUTsarerare). A web server (an HTTP
server) is alsoanobservant system[12]. A webserver re-
sponds to anHTTP GET by readinga resource from local
storage, but it is uninvolved in an updateof that resource.
Observantsystemsareeasyto deploy on thewebbut must
detectupdatesduringa readby comparingthecurrentstate
with thelastobservedstateof thesameresource. A differ-
encedenotesthatanupdateoccurredsometimein thepast.

In Section2 an example is given to motivatethe utility
of this research.Next thetime anddatamodelfor TTXPath
arepresented. The TTXPathdatamodel is a snapshotdata
model thatextendstheXPathdatamodel.In Section5, the
temporal query languageextensions aresketchedandsev-
eralexamplequeriesaredescribed. Thepaper thenpresents
relatedwork andconcludes.

2. Moti vating Example

To exemplify ourdatamodel, considerthefollowing sce-
nario. registrar.wsu.edu is a site that offersXML
dataoncoursestaught during thecurrentsemesteratWash-
ingtonStateUniversity (WSU).New coursesareaddedeach
semesterto thesite andold coursesareremoved. Updates
to repair incorrect informationlike misspellings are infre-
quent. studentlife.wsu.edu is a portal that pro-
videsinformation for studentsat WSU. Someof the infor-
mationcomes from observing the dataavailableat reg-
istrar.wsu.edu. Several timeseachsemester, course
datais uploadedfrom registrar.wsu.edu to stu-
dentlife.wsu.edu. In Fall, 2001, thefollowing XML
wasuploaded(theXML hasbeenkeptvery simplefor ex-
pository purposes).

<?xml version="1.0">
<registrar>

<department>
<course>
<prerequisite>CS223</prerequisite>
<code>CS451</code>
<teacher>Julie</title>

</course>
</department>

</registrar>

Notethat theabove datadoes not have any explicit tempo-
ral information,that is, thereareno timestampsin attribute
valuesor in element content.

Figure1 sketchesthe(logical) treestructureof theXML
fragment(excludingwhitespace). Thecurrentcourseinfor-

mationis displayedin thetreein theforeground. Eachnode
in the treecorrespondsto anelementor valuein thedocu-
ment.Thetreein thebackgroundis theold courseinforma-
tion for Spring,1999. For thecurrent semester, information
about a prerequisitecoursehasbeenadded andtheteacher
updated.

Sureshis astudentatWSU.Hewouldliketo takeacom-
putersciencecourseasanelective to complete his degree.
UnfortunatelySureshhastakenall of thecomputerscience
coursesoffered in theprevious threeyears.If thereareno
new computer sciencecourseshewill have to take a Math
courseinstead.To find outabout new courses,Sureshvisits
the student life portal and would like to posethe follow-
ing query (in the appropriateXML query language): “Are
thereany coursesthat are offeredthis year that have not
beenofferedin thepasttwo years?”To evaluatethequery,
current informationwill have to be comparedagainst that
availablein thepast.Thiskind of queryis calledadifferen-
tial query. Differential queriesareuseful in many contexts.
Sureshmay be concerned abouthis financesandwish to
identify trendsin stocksthatheowns.Or hemaybeaNap-
steruserandwould like to find the songsaddedsincehis
previousvisit to theNapsterwebsite.

Suresh is also interested in retrieving changes
made to his grades for the Spring, 1999 semester.
register.wsu.edu currently shows thatheearneda B
in programming, but Sureshis prettysurethathegot anA.
He wonders if andwhen the grade was changed. Suresh
would like to makeanaudit query. An auditquery rolls the
databackto somepaststate,in Suresh’s case,to Summer,
1999 whenSpring gradeswereposted. Ideally, the query
will also generatean audit trail that shows changes over
time to selecteddata.

Thekey contributionof thispaperis thatit describeshow
to support thekindsof queriesof interestto Sureshondata
that lacksexplicit timestampsin anobservant system.We
could assumethat explicit timestampswerepresentin the
data(this is the startingassumptionin temporal database
research). Alternatively we couldsuggestseveral rigorous
strategiesfor specifyingsuchtimestamps [15]. But in this
paperwe do not make suchan assumptionnor do we dis-
cussalternativesbecauseourfocusis onthecurrentstateof
XML. Lots of XML datacurrently exists without any ex-
plicit timestamps.Even whena timestampis present,the
structure andsemanticsof the timestampwill likely vary
fromdocumentto documentsincenoneof theXML schema
languagescurrently proposedhavetemporal semantics[18].

Althoughtherearenoexplicit timestampsin mostXML
data,anobservantsystemhasaccessto at leasttwo implicit
timestamps.If the XML is storedin a file (which is often
the case),thenthe file’s modificationtime is a timestamp
thatdenotestheearliesttimeatwhichthatdataexisted.The
HTTP 1.1protocol providesa mechanism for recoveringa

Figure 1. Two snapshots of the XPath data model for the example fragment

requestedresource’s modificationtime (which is important
for caching). Thesecondimplicit timestampis the time at
whichthedatais readby theobserver.

Both thereadandmodification timestampsarefrom the
transaction timedomain. That is, they concern the time(s)
whenthe dataexistedat the datasourceandwhenit was
retrieved by a browser. In contrast a valid time times-
tampwould denotewhendatais true in somemodeledre-
ality [16]. In theabove scenarioinvolving coursedata,the
distinctionbetweenthesetwo differentkindsof timeevapo-
ratessinceit isassumedthatdataisavailablefromtheserver
only whenthat datais valid. Saiddifferently, a course is
added to theserver whenit is currently beingoffered,and
immediately removedonceit is no longeroffered.

Thetechniqueproposedin thispaperis to utilize theim-
plicit timestampsto build a transaction-time history for a
document.Figure2 shows the transaction-time history for
theexample datain Figure1. In Spring,1999 thedocument
is created.In Summer, 2000 theobservant systemreadan
unchangedversion of the document (the file modification
time wasstill Spring,1999). But in Fall, 2001, it wasread
again andthefile modification timewasFall, 2001 (thedoc-

ument wasobservedassoonasit wasmodified). Sincethe
documentwasaccessedonly threetimes,mostof the his-
tory is unobserved, and therefore hasto be inferred. The
areashadedgraydepictstheknown history. Informationis
known if it is unchangedbetweenobservations. Theareas
not shadedgray represent an assumedhistory. In this pa-
per we make the following assumption, which we call the
continuity assumption: informationis assumedto exist un-
til explicitly modified. TheteacherdataaboutMiguel was
known to exist from Spring,1999to Summer, 2000. Since
thedocumentwasnotreadbetweenSummer, 2000andFall,
2001 we assumethat Miguel remains the teacheruntil the
documentwasmodified in Fall, 2001 to insertJulie asthe
teacher. Becauseof the continuity assumption, the status
of Miguel beinga teacheris recorded as assumed, rather
thanknown from Summer, 2000to Fall, 2001. In Figure2,
the assumeddatais the areastippledwith dots. The con-
tinuity assumptioncanbefurther classifiedasoptimisticor
pessimistic. The optimistic continuity assumptionis that
every modificationof the documentis observed. Thepes-
simisticcontinuityassumptionis thattheobservantsystem
mightmisssomemodifications.In thecontext of theexam-

Figure 2. The TTXPath data model for the example fragment

ple, if the observant systemadopts an optimistic continu-
ity assumptionthenthe datawasmodifiedonly in Spring,
1999 andFall, 2001. This implies that the portions of the
treethatremainunchangedin bothmodificationsshouldbe
known ratherthanassumed.But with a pessimisticconti-
nuity assumption thedatacouldhave beenarbitrarily mod-
ified many timeswithout beingobserved. In Figure 2 the
areawith a brick patternhasa known statusunder anopti-
mistic continuity assumption, but is assumedunder a pes-
simisticcontinuity assumption, sincethisportion of thetree
did not changein the secondmodification. The areawith
a dot patternhowever is assumeddataunderboththeopti-
mistic andpessimisticcontinuity assumptions sinceit was
certainly changedby somemodification. In the remainder
of this paper, we will adopt the pessimisticcontinuity as-
sumption. Section4 describesthedatamodel in detail. Fi-
nally, the lifetime of eachnode in Figure2 is depictedas
a pipe. In a TTXPath query, a pipecanbe traversedto ac-
cesspastor futureversions of a node. Section5 discusses
thequery languageandgivesmany example queries. In the
next section,the time model we usein the paperis intro-
duced.

3. Time Model

An observantsystemonly occasionally observesadocu-
ment.Eachobservationyieldsinformationabout thedocu-
mentasit existsatasinglepoint in time,whichwewill call
the read time. The observation may also yield meta-data
about the document. In the HTTP 1.1 protocol an impor-
tantpieceof meta-data that is obtainedis themodification
timeof adocument.Themodificationtimeis thetimewhen
thedocumentwaslastmodified. Wewill call eachobserved
modificationa new observedversionof thedocument.

Notationally, we will represent the history of an XML
document, � , asa sequence, ������ ���
	
	�	
� ����� where ��� is
the modification time of observed version � and ��� is the
(mostrecent)readtime. Subsequent reads on an unmodi-
fied version will pushthe readtime later. Without lossof
generality, we restrictthediscussionto a singleXML doc-
ument from a singleserver sincea document history with
nestedsub-documents residenton different servers canbe
viewedasa singledocumentwith a globalhistoryof reads
andmodifications onany of thesub-documents.

The readand modification times are usedto construct

a usefulclock calledthe version clock. The version clock
keepstime in theobservant system.Themodificationtime
comes from the clock on the file systemat which the re-
source resides,while the readtime is from the observant
system’s clock. (It doesnot matterif theseclocksaresyn-
chronized,however, we stipulatethat if thereadtime of an
observedversionis earlierthanthemodification time, then
it beadjustedto themodification time.) Theversion clock
adds oneclock tick for eachversion, andtells time by re-
porting themodificationandreadtimesfor thatversion.

Definition 3.1 Theversionclock, ����������� , is apartialfunc-
tion constructedfrom the history of a well-formed XML
document, �! �"#������ � �
	�	
	$� ����� , as follows: �%���������&"
���!' � �
'�� .

Thereadtimeandmodification timecanbeusedto infer
knowledgeabout unobservedstatesof thedocument. If the
documenthasnot beenmodifiedsincethe last read, then
it is knownthat thecurrentobservedversionis theversion
in existencesincethe modificationtime. If the document
hasbeenmodified sincethe last read, then the evolution
of the documentis unknown betweenthe readtime of the
previousobserved versionandthemodificationtime of the
current observed version. Oneor more transitoryversions
mayhaveexistedduring thattime which theobservantsys-
tem missed. An optimistic observer will assumethat no
versionsweremissed.We distinguish betweenknown and
assumedversions of a document.

The readand modification times are kinds of transac-
tion time. Researchin temporal databaseshasidentifiedtwo
primary, distinct time dimensions: valid time andtransac-
tion time [16]. Valid time is the real-world time of a fact,
whereastransactiontimeis thedatabasetimewhenthatfact
waspresent in thedatabase.

In this paper, the transaction-time domain is a setof in-
stants, (*)+),".-0/ ��	
	�	$�
1�23�
	
	�	
�54

6
. The until changed

variable, uc, representstheever-changing current time [9].
In contrastto traditional temporal databaseresearch, the
transaction-time domainendsat 4 thuspermitting future
transaction times.This enables documentauthors to setex-
piration timesfor documentsandto schedule documentsfor
future release.

In this paper, example times will be represented using
Gregoriancalendarconventionsin the granularity of days,
soeachinstantin thetransaction-time domaincorresponds
to aday. In practice,theliteral representationandgranular-
ity of timesin thetransaction-timedomainis systemdepen-
dent, with a granularity of UTC secondsanda Gregorian
calendar representationbeingcommon.

4. Data Model

A well-formedXML documentis a collectionof nested
elements. An element begins with a starttagandendswith
a pairedendtag. Betweenthetags,anelementmight con-
tain content, thatis, text or otherelements.TheXPathdata
model is commonly assumedto be an ordered tree. The
treerepresentsthenestingof elementswithin thedocument,
with elementscorresponding to nodes,andelement content
comprising the childrenfor eachnode. Unlike a tree, the
children for a node areorderedbasedon their physicalpo-
sitionwithin thedocument.

UnfortunatelytheXPathrecommendation[30] doesnot
providea formalmodel.Below wegiveonepossiblemodel
thatomitsdetailsextraneousto theaimsof this paper.

Definition 4.1 TheXPathdatamodel,7 , for awell-formed
XML document, � , is a four-tuple, 798 ��:;"<��� �

=
�
>
�
? � ,

wherethetuplemembers aredefinedbelow.
@ = is a setof nodesof the form �A� ��B � where B is the

node identifierand � is anordinalnumbersuchthatfor
all ��� ��B � � �DC ��E �GF

=
, B startsbefore E in thetext of �

if f �IHJC .
@ > is a setof edgesof theform ��K ��B���E � , whereBL��E F=

andK is anordinalnumberthatcapturestheordering
among theedges emanating from B . An edge ��� ��B���E �
meansthat B is a parent of E . In termsof � , it repre-
sentsthat E is in the immediatecontentof B . Among
thechildrenof B , M is before N in � if f for �A� ��BL� MO�*F

>
and �DC ��BL� NP�*F

>
, �+HQC .

@ Thegraph, � = �
> � , formsa tree.

@ ? is the information set function which mapsa node
identifier to an information set. An information set
is a collectionof propertiesthat aregeneratedduring
parsingof the document. For example, an element
nodehasthefollowingproperties:Value(theelement’s
name), Type(element), andAttributes(a setof name-
valuepairs,in XPath,attributesareunordered).In fu-
ture, it maybepossibleto dynamicallyextendthe in-
formation set (the XML Information Set proposal is
available from the W3C but is undergoing extensive
development).

@ ��F = is the root, i.e., R�ST��� ��UV� �3�WF
>

. � is thedata
model root, ratherthanthedocumentroot (thefirst el-
ementin thedocument)sinceadocumentmaycontain
processinginstructions andcomments before thefirst
element.

The TTXPath datamodel is an extensionof the XPath
datamodel. To capturetransactiontime,wedefineasimple
snapshot datamodel.

Definition 4.2 The TTXPath data model, 7X)Y) , is con-
structedfrom thehistoryof awell-formedXML document,
� "Z��� �� � �
	�	
	�� ��� � , where � � is the modified time
of version � and � is the read time. The data model is
7)Y) 8 � :["<\]�A��� , where \]����� is a partial function that
mapsa transactiontime, � , to anordered pair �_^ � 7`� .@ 7 is theXPathdatamodel thatwasin existence(either

known or assumed) at time � . 7 is referred to asthe
snapshotof � at time � .

@ ^ is thestatuswhich is eitherknownor assumed. The
statusis known if there exists some �a��b� b such that
� �dc � c � � . The statusis assumedfor all other
values of � between�ae and 1�2gf

h
. \]�A��� is undefined

for all othervaluesof � .

Therearetwo thingsto observeaboutthisdatamodel.First,
it is a linear, notabranching, historyof versions,A branch-
ing history is onewheremore thanoneversionof a docu-
mentis considered current simultaneously, perhaps dueto
theindependent editingof local copiesby multiple editors.
Second, eachsnapshot is anXPathdatamodel. TheXPath
query language,andquery languages that useXPath, are
well-definedfor snapshots.

The drawback of the snapshotdata model is that, if
naively implemented, it would needa lot of space.A doc-
ument may change very little when it is modified. One
way to recoup somespaceis to merge versions by identi-
fying thoseportions of the datamodel that areunchanged
by a modification. Identifying which portions remainthe
sameis a challenging problem. Nguyenet al. have devel-
oped anefficient XML ‘dif f ’ technique to (approximately)
identify changes[10]. Anotherapproachis to trackchanges
by defining(persistent)keys for elements[5]. We assume
that somemethod exists for identifying changes in nodes
andedgesbetweenversionsandutilize thatmethodto build
a space-reduceddata model. The space-reducedmodel
simply merges informationcommon to consecutive snap-
shots,andrecords the lifetime of eachnodeandedgewith
a transaction-time interval.

5. Query Language

In thissectionweintroducetheTTXPathquery language.
TTXPathextends XPathwith constructs to querythe trans-
actiontime. Thelanguageis designedto meetseveralgoals.
Firstandforemost,it hasto befully compatiblewith XPath.
ExistingandfutureXPathqueriesshouldwork exactly the
samein TTXPath. A secondary goal is that the extensions
should bebothminimal, to reducetheconceptualoverhead,
andefficient. Our designreusesXPathwhenever possible.
The general idea is that transaction time will be usedto
choosea snapshot,andXPathusedto querythatsnapshot.

A third goal is that theextensionsshouldincludeall “use-
ful” constructs. Thoseconstructsshouldbe favoredin ab-
breviatedsyntax.Of lesserimportance,at this time,arethe
completenessandexpressivenessof thequery language.In
future,wewill addresstheseproperties.

Thepresentation in this sectionis somewhat backwards.
First,examplesof TTXPatharegiven.Next abrief overview
of XPath is given followed by a detaileddiscussionof the
semanticsof TTXPath. The reasonthat we give the exam-
plesfirst is to familiarizethereader with theeaseof giving
TTXPathqueries.

5.1. Examplesof TTXPath

Let’s look atsomeexample queries.RecallthatTTXPath
is usedto specify locationsin an XML document. List
course nodesas of Spring, 1999 (note that all TTXPath
queriesoccupy asinglelineof text, butdueto columnwidth
restrictions in this paper TTXPathqueriesarelistedonmul-
tiple lines,pleaseignore theadditional whitespace).

/tt-past::slice(’Spring, 1999’)
/department

/course

In the above query, only nodes described as a
department/course in the version as of Spring,
1999 are retrieved. In the following query, we use the
current schemato queryfor coursenodesthatexistedin the
databasesinceSpring,1999(but mayhave beendescribed
differently, e.g.,asschool/subject).

/department
/course

/tt-past::slice(’Spring, 1999’)

Thedifferencebetweenthe two queries is subtle.Thefirst
query rolls thedocumentbackto theversionasof Spring,
1999 andthenexecutesanXPathquerywithin thatversion.
The secondquery finds course nodes that are in the cur-
rentversionandthenrolls backthosenodesto theirSpring,
1999 counterparts(if they exist). A coursethatwasdeleted
in Fall, 2000would appear in the resultof the first query,
but not in thatof thesecondquery; while a coursethatwas
reachable via school/course in the Spring,1999 ver-
sionof thedocumentis (possibly)in theresultof thesecond
query, but not thefirst.

List coursesofferedin Spring,1999, but not in the fol-
lowing semester(seenext page).

/tt-past::’Spring, 1999’
/department
/course

[not(tt-future::’Summer, 1999’)]

This queryrolls the databasebackto Spring,1999. Then
for eachcoursefound it teststo determine if thatcoursecan
berolled forwardto Summer, 1999. If thecoursehasbeen
deletedthenthereis no versionof it in the Summer, 1999
snapshot. Notethatthenot operator in XPathevaluatesto
trueif thenode-setis empty.

List coursesthatarecurrently offeredthatwerealsoof-
feredin Spring,1999.

/department
/course
[tt-past::’Spring, 1999’]

Thisqueryfindscurrentcoursesandthenteststo determine
if someversionof thecoursewasofferedin Spring,1999.

List courses that have not beenrevised since Spring,
1999.

/tt-past::’Spring, 1999’
/department
/course

[not(tt-future::tt-next())]

This query rolls the document back to the Spring, 1999
snapshot. It thenfindscourseinformation.For eachcourse
it teststo seeif any new version of the courseexists; the
tt-future axisjust switchesthetemporal direction.

List coursescurrentlyofferedthathavebeenaddedsince
Spring, 1999.

/department
/course
[tt-earliest() > ’Spring, 1999’]

Thequeryfirst findscurrentcourses.For eachnode found
it thenextractsthe time of theearliestversionandensures
thatit is greaterthanSpring, 1999.

List coursesthathavebeendroppedsinceSpring,1999.

/tt-past::’Spring, 1999’
/department
/course

[not(tt-future::slice(’now’)]

Thisquery first findscourseinformationasof Spring, 1999.
Thecoursehasbeendroppedif it is not possibleto roll the
pastcoursenode forward to now becausethat indicatesthe
coursehasbeendeletedsometimeprior to now.

In general, an audit trail is not possibleto construct in
TTXPathdirectlysincethetrail couldincludeanunbounded
number of revisions. But in an XSLT template,TTXPath
canbeusedto generateall revisions. Thefollowing XSLT
templateusesthett-next() nodetestto iterateover all
previousversions.

<xsl:template
match="department/course">
<xsl:copy-of select="."/>
<xsl:apply-templates

match="tt-past::tt-next()"/>
</xsl:template>

5.2. XPath

Before describing TTXPath, we briefly summarize
XPath. An XPath query is a sequenceof steps.Eachstep
consistsof four parts: a context, an axis, a node test, and
a list of predicates. The context is the environment, in-
cluding the context node,in which the stepbegins evalu-
ation. Theaxisspecifiesa setof nodes,relative to thecon-
text node, that might be in the result of the step. Possi-
ble axesincludeself, parent, child, descendant,
ancestor, descendant-or-self, etc.Thenodetest
is apredicatethatis appliedto eachnode in theaxis.Possi-
blenodetestsincludeany andelement(). Thenodetest
is syntacticallyseparatedfrom theaxiswith thestring‘::’.
Thosenodesthat passthe node testarethentestedby the
predicate(s).A stepmayhave severalpredicates,eachde-
notedby brackets.To qualify for a result,a node mustpass
every predicate.A predicatemayitself includeoneor more
XPathqueries.A simplesyntaxfor a stepis givenbelow.

axis::nodetest[iLj�kmlon 2mp3q k e] 	�	
	 [iYj�kmlon 2mpoq k3r]
The resultof a stepis an ordered list of nodes,called,

paradoxically, a node-set. Theordering is basedon theor-
derin which thenodesappearin thedocument. Thedirec-
tion, documentorder or reversedocumentorder relative to
thecontext node, is determinedby theaxis(e.g.,child is
documentorderwhileancestor is reverse).Theresultof
a queryis theresultof thefinal stepin thequery. Nodesin
theresultof non-final stepsareused(in order)asthecontext
node for thenext step.Syntactically, thestepsareseparated
by the ‘/’ character. A simplesyntaxfor a queryis given
below.

/ s q kti e / 	
	
	 / s q kti �
An example query to retrieve the children of the

course elementwith a code attribute value of CS451
is givenbelow.

/descendant-or-self::course
[attribute::code="CS451"]/child::*

The first stepexploresthedescendant-or-self axis
from thedatamodelroot. It appliesanelement testto keep
only course elements.The predicatefilters thosenodes
that lack acode attributeof CS451. Thesecondstepfol-
lows thechild axisandretrieves any node(thewildcard
is *).

XPath has an abbreviated syntax that shortens most
queries. A shorter, semantically-equivalentquery usingthe
abbreviatedsyntaxis givenbelow.

//course[@code="CS451"]/*

Readersinterestedin further detailsshouldconsultthe
XPathrecommendation [30].

5.3. TTXPath

TTXPathextendseachpartof XPath.It addsseveralnew
axes,node tests,andtemporal constructors. In addition, the
query context is expandedto includethe current time, the
referencetime, andthe temporal order. Thecurrent time is
thetime at which thequeryis initiated. Thereferencetime
is the time, relative to a step, that is consideredthe time
“now”. Initially, thereferencetimeandthecurrenttimeare
thesame.But in a TTXPathquery, thequery’s point of ref-
erencecanbeshiftedto thepastor thefuture by a temporal
nodetest.Thereferencetimeis critically importantbecause
it specifieswhich snapshotto usein theevaluationof each
XPathpiecein a TTXPath query. The temporal ordercon-
trols the ordering of nodes in a node-set(earliestor latest
first, if it contains nodesfrom more thanoneversion).

In thefollowingsectionswepresenteachchangein more
detail.

5.3.1 Transaction-time axes

The following additional axes are available in TTXPath.
Eachaxis specifiesa temporal direction to searchfor ver-
sions(pastor future), thedesiredstatusof theversions se-
lected(known or bothknown andassumed),anda temporal
order for theresultingnode-set.

@ tt-past — Selectall pastversions of the context
node andsetthetemporal order to latestfirst.

@ tt-past-known — Selectonly known past ver-
sionsof the context nodeandset the temporal order
to latestfirst.

@ tt-future — Selectonly known, futureversionsof
thecontext node andsetthetemporal orderto earliest
first.

@ tt-future-known — Selectall future versionsof
thecontext node andsetthetemporal orderto earliest
first.

Formally, the transaction-time axeshave the meanings
given in Figure3. We assumethat B is thecontext node, � �
is thereferencetime, �5u is thecurrenttime,and v is thetem-
poral order. Thecontext is inheritedfrom theenvironment.

5.3.2 Transaction-time nodetests

TTXPathadds severalnode tests,slice(), tt-next(),
tt-next-immediate(), tt-previous(), and
tt-previous-immediate(), thataresupportedonly
alonga transaction-timeaxis.

Theslice() testis temporal timeslice. It takesasin-
puta transaction-timepoint literal andselectstheversion of
thenodecurrent at thetimespecified.

slice �����
8 BL� � � � ��u � v3:Y"w-x�A� ��B �$8 B�� � � ��u � vy:Vzy�A� ��B �%F�{o|~}��
6

As a side effect slice() setsthe referencetime to the
time of theslice(� replaces � � in theresult).In abbreviated
syntax,if nonodetestis specified,slice() is used.

The remaining nodetestsare mostly useful for gener-
ating audit trails. Thett-next() nodetestchoosesthe
versionof thenodethat is current from amongthedescen-
dentsof thecontext node in thesnapshotcorrespondingto
the modificationtime of the “next” version on the version
clock. The interpretationof “next” depends on the tempo-
ral order. If thedirection is latestthen“next” meansearlier,
if it is earliestthenit meanslater. Let �W��� ��B � be a partial
function thatextractsthesubtreerootedat B at time � from
7d)L) , thennext-version() is definedbelow. Thecon-
text node, referencetime, current time, andtemporal order
areinheritedfrom theenvironment.

next-version �A���$8 B�� � � � ��u �
� {o��������:

= -x�A� ��B �$8 B�� � � ��u �
� {o��������:Vzx��� ��B �%F�{o|~}��� ��� � ��B �*F�{3|~}��� ��HX� �� �W�����;�"����A� f

h � 6

As a sideeffect the referencetime is setto the time of the
next version.

The remaining node tests are similar. The
tt-previous tests operate in the reverse temporal
order, while the immediate variants only consider
changes to the node and its children rather than all
descendants.

5.3.3 Transaction-time constructors

Several temporal constructorsareadded.Their namesand
functionality aredescribedin Table1. Eachconstructor op-
erateson the context node andextractsa transaction-time
literal.

Theconstructorsareusedto extract thetransactiontime
of anodewhenneeded.

6. RelatedWork

Therehasbeenrelatively little researchin representing
andquerying time on the web. Chawatheet al. were the

tt-past 8 B�� � � � ��u � vy:
= -x�A� ��B �$8 B�� � � ��u �

� {o��������:Vz0/ c � c � �
� \]�A���I"w� � 7`�

� 7�"w� �
=
�
>
� �

�
B F

= 6
tt-past-known 8 BL� � � � ��u � vy:

= -x�A� ��B �$8 B�� � � ��u �
� {o��������:Vz0/ c � c � �

� \]�A���I"w���o�Y�o��� � 7`�
� 7�"�� �

=
�
>
� �

�
B F

= 6
tt-future 8 BL� � � � ��u � vy:

= -x�A� ��B �$8 B�� � � ��u � �0{3�
� }�������:�z�� � c � c ��u

� \]�����+"�� � 7&�
� 7�"�� �

=
�
>
� �

�
B F

= 6
tt-future-known 8 B�� � � � � u � vy:

= -x�A� ��B �$8 B�� � � � u � �0{3�
� }�������:�z�� � c � c � u

� \]�����+"����3�L�3��� � 7&�
� 7�"�� �

=
�
>
� �

�
B F

= 6

Figure 3. Semantics of the transaction time axes

Constructor Function

tt-timeOf() Extractthereferencetime
tt-first() Extractthemodification timeof theearliestversionof a node
tt-last() Extractthereadtime of thelastknown versionof a node
tt-modified() Extractthemodification timeof thecurrentversionof thenode
tt-read() Extractthelatestreadtime of thecurrentversionof a node
tt-last-modified() Extractthelatestmodification time for a node
tt-last-read() Extractthelatestreadtime for a node
tt-previous-modified() Extractthemodification time of thepreviousversionof this node,sensi-

tive to thetemporal order
tt-previous-read() Extractthereadtimeof thepreviousversionof thisnode,dependsonthe

temporal order
tt-next-modified() Extractthemodifiedtimeof thenext versionof thisnode,sensitiveto the

temporal order
tt-next-read() Extract the readtime of the next version of this node, sensitive to the

temporal order

Table 1. Temporal constructors in TTXPath

first to study time in an XML-lik e setting[8]. They en-
coded times in edgelabels in a semistructureddatabase
andextendedtheLorel querylanguagewith temporal con-
structs.Dyresonet al. extended their researchwith collaps-
ing andcoalescingoperators[13]. Thefocusof this paper
is on XPath andobservant systemsratherthansemistruc-
tureddatabases.Grandi andMandreoli presenttechniques
for addingexplicit valid-timetimestampsin anXML doc-
ument [15]. More recently, Amagasaet al. have presented
a temporal extension of the XPath datamodel [2]. They
studiedvalid time rather than transaction time in a non-
observant system.They encoded the valid time by adding
timestampsto edgesratherthannodesandedges.Nguyen
et al. have researchedanddevelopedan observant system:
a datawarehousefor XML data[23]. They focus primar-
ily on techniquesfor keeping datafreshin the warehouse
andon integratingupdateswhenthey arrive. Towards this
end, they presentanSQL-likequerylanguagefor rule-based
triggeringandmonitoring of updates.

7. Conclusion

Accounting for transactiontime is essentialto support-
ing audit queries that delve into pastdatabasestatesand
differential queries that pinpoint differencesbetweentwo
states.Somewhatsurprisingly, transactiontime canbeim-
plementedin anobservant systemthathasonly readaccess
to data. Updatescan be detectedpost facto by tracking
changesin observedstates.Thedetectiondoesnot always
yield certaininformation,andit is important to distinguish
betweenstatesthatareknown andthosethatareassumed.

This paper sketchesthe TTXPath datamodelandquery
language.TTXPathextends XPathwith support for transac-
tion time. XPathhasno temporal semantics.To construct
a TTXPath data model, snapshots of an XML document
areobtainedover time by an observer. The snapshotsare
thenmergedandtransaction timesareassociatedwith each
edgeandnode.TheTTXPathquerylanguageextendsXPath
with temporal axes,nodetests,andconstructors. The lan-
guageextensionsenabletemporalqueriestobenaturally ex-
pressed.Oneimportant feature of TTXPath is that it reuses

XPath.TTXPathis fully backwards-compatiblewith XPath.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lorel QueryLanguage for Semistructured
Data. International Journal of Digital Libraries, 1(1):68–
88,1997.

[2] T. Amagasa,Y. Masatoshi,andS. Uemura. A DataModel
for TemporalXML Documents. In Database and Expert
SystemsApplications,11thInternational Conference, DEXA
2000, pages334–344,London,UK, September2000.

[3] T. Berners-Lee.KeynoteAddress.In SeventhInternational
World Wide WebConference(WWW7), Brisbane,Australia,
April 1998.

[4] A. Bonifati andS.Ceri. ComparativeAnalysisof FiveXML
QueryLanguages.SIGMODRecord (ACM Special Interest
Groupon Managementof Data), 29(1):68–79,2000.

[5] P. Buneman,S.Davidson,W. Fan,C. Hara,andW. C. Tan.
Keys for XML. In Proceedingsof the Tenth International
Conference on World Wide Web Conference (WWW10),
pages201–210,HongKong,China,May 2001.

[6] P. Buneman,S.Davidson,andD. Suciu.ProgrammingCon-
structsfor UnstructuredData. In DBPL-5, Gubbio, Italy,
1995.

[7] P. Buneman, S. B. Davidson,G. G. Hillebrand,andD. Su-
ciu. A QueryLanguage and OptimizationTechniquesfor
UnstructuredData. In H. V. JagadishandI. S.Mumick, ed-
itors,Proceedingsof the1996ACM SIGMODInternational
Conferenceon Managementof Data, pages 505–516, Mon-
treal,Quebec,Canada,4–6June1996.

[8] S.Chawathe,S.Abiteboul,andJ.Widom. Representingand
QueryingChangesin SemistructuredData. In Proceedings
of theInternational ConferenceonDataEngineering, pages
4–13, Orlando,FL, February1998. IEEE.

[9] J.Clifford, C. Dyreson,T. Isakowitz, C. S.Jensen,andR. T.
Snodgrass.OntheSemanticsof nowin TemporalDatabases.
ACM Transactionson DatabaseSystems, 22(2):215–254,
June1997.

[10] G. CobenaandS. a. A. M. Abiteboul. DetectingChanges
in XML Documents.TechnicalReport194,Verso,France,
March2001.

[11] D. Connolly, R.Khare,andA. Rifkin. TheEvolutionof Web
Documents: TheAscentof XML. XML specialissueof the
World Wide WebJournal, 2(4):119–128,Autumn1997.

[12] C. Dyreson. Towards a TemporalWorld-Wide Web: a
Transaction-TimeWeb Server. In Proceedingsof the Aus-
tralian DatabaseConference(ADC ’01), pages290–301,
Gold Coast,Australia,January 2001.

[13] C. Dyreson, M. Böhlen,and C. S. Jensen. Capturingand
QueryingMultiple Aspectsof SemistructuredData. In Pro-
ceedings of the International Conference on Very Large
Databases(VLDB ’98), pages290–301, Edinburgh, Scot-
land, September1999. http://www.eecs.wsu.edu/cdyre-
son/AUCQL/.

[14] D. Florescu,A. Levy, andA. Mendelzon. DatabaseTech-
niques for the World-Wide Web: A Survey. SIGMOD
Record, 27(3):59–74,September1998.

[15] F. GrandiandF. Mandreoli. The Valid Web: it’s Time to
Go. TechnicalReport46, TimeCenter, Aalborg, Denmark,
December1999.

[16] C. JensenandC. D. (eds.). A ConsensusGlossaryof Tem-
poral DatabaseConcepts - February 1998 Version, pages
367–405. Springer-Verlag,1998.

[17] N. Kline. An Updateof the TemporalDatabaseBibliog-
raphy. SIGMODRecord (ACM SpecialInterestGroup on
Managementof Data), 22(4):66–80,Dec.1993.

[18] D. Lee and W. Chu. Comparative Analysis of Six XML
SchemaLanguages.SIGMODRecord (ACM SpecialInter-
estGroupon Managementof Data), 29(3):76–87,2000.

[19] D. Lomet and B. Salzberg. Transaction-TimeDatabases,
chapter16,pages388–417. Benjamin/Cummings,1993.

[20] B. Ludäscher, R. Himmer̈oder, G. Lausen,W. May, and
C. Schlepphorst. Managing SemistructuredDatat with
FLORID: A Deductive Object-OrientedPerspective. to ap-
pearin InformationSystems, 1998.

[21] E. McKenzie. Bibliography: TemporalDatabases.SIG-
MOD Record (ACM SpecialInterestGroupon Management
of Data), 15(4):40–52,December1986.

[22] E. McKenzie andR. Snodgrass.Extendingthe Relational
Algebra to SupportTransactionTime. In Proceedingsof
ACM SIGMOD International Conference on Management
of Data, pages467–478,SanFrancisco,CA, May 1987. As-
sociationfor ComputingMachinery.

[23] B. Nguyen,S.Abiteboul,G. Cobena,andM. Preda.Moni-
toring XML Dataon theWeb. In Proceedingsof ACM SIG-
MOD International Conferenceon Managementof Data,
SantaBarbara,CA, June2001. Associationfor Computing
Machinery.

[24] D. Quass,A. Rajaraman,J.D. Ullman,J.Widom,andY. Sa-
giv. QueryingSemistructuredHeterogeneous Information.
Journal of SystemsIntegration, 7(3/4):381–407,1997.

[25] J. F. RoddickandR. T. Snodgrass.TransactionTime Sup-
port. In R.T. Snodgrass,editor, TheTSQL2Temporal Query
Language, chapter17, pages319–325. Kluwer Academic
Publishers,1995.

[26] M. D. Soo. Bibliography on TemporalDatabases.SIG-
MOD Record (ACM SpecialInterestGroupon Management
of Data), 20(1):14–23,Mar. 1991.

[27] R. StamandR. T. Snodgrass.A Bibliographyon Temporal
Databases.DatabaseEngineering, 7(4):231–239,Dec1988.

[28] D. Suciu. SemistructuredDataandXML. In to appear in
Proceedingsof theInternationalConferenceon theFounda-
tionsof Data Organization(FODO’98), 1998.

[29] V. TsotrasandA. Kumar. TemporalDatabaseBibliography
Update.SIGMODRecord (ACM SpecialInterestGroupon
Managementof Data), 25(1):41–63,March1996.

[30] W3C. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath,Nov. 1999.

[31] W3C. XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xslt, Nov. 1999.

[32] W3C. ExtensibleMarkup Language (XML) 1.0 (Second
Edition). http://www.w3.org/TR/REC-xml, Oct.2000.

[33] W3C. The XML Query Algebra.
http://www.w3.org/TR/query-algebra,Feb. 2001.

[34] W3C. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery, Jun.2001.

