
To appear in Proceedings of the International Conference on Dependable Systems and Networks (DSN-2002),
IEEE/IFIP, June 23-26, 2002, Washington, DC.

Mr. Fusion1: A Programmable Data Fusion Middleware Subsystem with a
Tunable Statistical Profiling Service

Andy Franz, Radek Mista, David Bakken, Curtis Dyreson, Murali Medidi2

School of Electrical Engineering and Computer Science
Washington State University

PO Box 642752
Pullman, WA 99164-2752 USA

Email: {afranz,rmista,bakken,cdyreson,mmedidi}@eecs.wsu.edu

1 Mr. Fusion is a device from Robert Zemeckis’ 1985 movie, Back to the Future, and its sequels. It takes garbage in and produces energy for

the time-travelling Delorean car of Doc Brown, the genial but mad scientist.
2 M. Medidi is joining the WSU faculty in May 2002. His present affiliation is Department of Computer Science, Northern Arizona

University.

Abstract

Voting is the process of combining multiple replies

from replicated servers into a single reply. Data fusion is
similar to but more general than voting. In data fusion,
the input sources are not necessarily replicated servers,
hence the inputs exhibit greater variance. Data fusion is
a fundamental building block in distributed systems. It
occurs in diverse contexts such as consensus, sensor
networks, intrusion detection, and hierarchical resource
monitoring, among others. This paper describes Mr.
Fusion, a framework that provides data fusion in
middleware. The heart of Mr. Fusion is a Fusion Core
module that provides mechanisms for programming a
wide variety of data fusion algorithms. Another part is a
Fusion Status Service that monitors low-level outputs
from the Fusion Core and alerts subscribers to divergent
values or timings. The implementation borrows
techniques from data warehousing and data mining.

1 Introduction

Voting is the process of choosing one output value
from many input values, each sent by a different replica of
a component such as a service implemented in software or
a hardware-based sensor. Data fusion [8,16] is more
general than voting in two key ways. In data fusion the
values are not expected to be identical and there are not
necessarily a well-defined number of replies (as with the
case of a replicated server group, for example). Examples
of data fusion include collating intrusion detection alerts
[2], distributed sensor networks [10], ad hoc mobile
network protocols (which typically aggregate many
values into one, typically to save battery power on
expensive transmissions), parallel neural nets trained

differently to estimate the power grid safety margin [5],
and hierarchical resource monitoring [16].

Middleware is a layer of software below the
application but above the operating system that offers
high-level programming abstractions across a network [1].
It helps mask the heterogeneity inherent in a distributed
system and also helps programmers to be more
productive, and helps achieve high-level interoperability.

In this paper we describe Mr. Fusion, a middleware
framework supporting data fusion. The remainder of this
paper is organized as follows. Section 2 describes and
example application. Section 3 provides an overview of
Mr. Fusion. Section 4 describes the details of the Fusion
Core, which is a programmable mechanism for data
fusion. Section 5 overviews the Fusion Status Service.

2 Example Application

One example application that can use Mr. Fusion is
fault-tolerant middleware providing replicated servers
such as with AQuA [6], Eternal [14], or ITDOS [13]. We
note that a distributed sensor or other more general data
fusion example would also be possible, but for brevity we
use an example more familiar to DSN readers (and in fact
found elsewhere in these proceedings [13]). In the
replicated server scenario, each server independently
executes an identical operation. The results, called
ballots, should also be identical unless there is a value
failure or inexact voting is required. The role of Mr.
Fusion is to fuse the ballots into a single result and to
monitor the behavior of the replicated servers to detect
anomalies, such as a security violation. Mr. Fusion is
configured with a set of policies (voting algorithms) and
logic to decide which policy to use. A policy is a simple
specification of how to fuse a set of ballots (e.g., a policy
might be to exclude “late” ballots and choose the median).
New policies and policy choice logic can be loaded into
Mr. Fusion at any time and existing ones modified.

3 System Architecture

The system architecture of Mr. Fusion is shown in
Figure 1. It consists of two main subsystems, the Fusion
Virtual Machine (FVM), which consists of the modules
on the left half of the figure, and the Fusion Status Service
(FSS), shown on the right half. Each subsystem consists
of a main component and number of supporting
components. CORBA is used for communication
between the major components.

The FVM fuses application-level data. Its main
component is the Fusion Core. The input to the Fusion
Core is a set of ballots. In the replicated server scenario,
each replica produces a ballot. The core evaluates a
policy given by the Fusion VM Manager. Eventually it
either creates an output ballot or throws an exception.
The creating of one output ballot or exception from a set
of inputs is called a fusion session, the start of which is
indicated by the init arrow. In the replicated server
scenario, the fusion session is called a vote and is
initialized by the client’s request arriving; other more
general applications can provide their own start and stop
to fusion sessions by this initialization mechanism.
Finally, the core also outputs information about each
fusion session to the Fusion Algorithm Profile Service,
indicating the success or failure of different policies used
in that session (ones that were tried but could not run to
completion due to the data). This can be used offline by

the Fusion VM Manager to calibrate its policies; it is not
discussed further for brevity.

The Fusion Status Service (FSS) is passed low-level
information about value and timing errors for each fusion
session by the Fusion Core. The FSS catalogs and
maintains a database of this information and aggregates
the data into higher granularities in spatial and temporal
dimensions. The database can be accessed using either
the Subscriber API or the Query API. The Subscriber API
allows users to specify a set of conditions that trigger a
callback or other action (three examples are presented
below). Using the Query API, users can retrieve current
conditions of the system using interactive queries. The
FSS is controlled and tuned by the FSS Manager.

Three example subscribers that can benefit from the
FSS follow. The first is a group membership service,
which is used as part of the replicated server example to
deliver client requests to the server replicas. Typically, a
group can only expel a member when no other member
(or too few of them) has received a message from it
within a specified timeout period. The period should be
adjusted to avoid expelling live members too often.
However, if a single member of a group is suffering from
performance problems, but is not yet past the threshold,
then the throughput of a virtually synchronous multicast
system can degrade dramatically [3]. The FSS extends
support to enable a group to expel a member that has been
“too slow for too long” (by various flexible definitions of
this predicate) but has not yet timed out at the other
members. The second example subscriber is a managed

Group
Membership

Service

Managed
Security
System

FSS Manager

Fusion VM
Manager

Log

Example
Subscribers

Log

Control

Query

Init

Fusion Algorithm
Profile Service

Input
Ballots

Output
Ballots

Control

Figure 1. Mr. Fusion system architecture

security system that takes input from intrusion detection
systems, virus checkers, operating system logs, etc., to
detect and react to intrusions. Such a system may regard
either value or timing errors as potential indicators of
attacks or successful intrusions. Similarly, the group
membership service for our replicated server example
could be configured to expel a member that is returning
values that are “too bad for too long”, with flexible
definitions of “too bad” and “too long” outlined below. A
third example is the Fusion Manager, which can use the
information on potential value errors, “significant”
deviation from the values in other ballots, in assigning
and adjusting the weights given to each ballot when using
weighted fusion (which is similar to weighted voting).

The Fusion Manager adjusts policies for the core based
on input from the FAPS, the FSS, and the core. It
presently employs very simple heuristics, but we are
working towards quantifying and implementing more
complicated constraints such as choosing the set of
policies based on application-level tradeoffs between
precision and fault tolerance and performance; generally,
waiting for more ballots before deciding increases fault
tolerance but also increases the latency (time to output).
A preliminary report is available [15].

4 Fusion Core

The Fusion Core is at the heart of the Fusion Virtual
Machine. It is an extended, more general successor to the

Voter Core in the Voting Virtual Machine (VVM) [4].
The Voting Definition Language (VDL) of the VVM has
been generalized, and the goto construct for branching
has been removed due to the complexity it added to the
VVM’s Voter Core. The core is depicted in Figure 2. We
now overview its chief components and their interactions.

4.1 Specifying Fusion Policies

The policies in the Fusion Core are specified in three
parts. The first two parts are called policy wrappers,
which specify the behavior at a given level. There is an
inner wrapper and an outer wrapper. The inner wrapper
wraps a single fusion policy. The outer wrapper wraps
both the inner wrapper and a number of fusion policies.
The function of the outer wrapper is to choose a single
fusion policy to evaluate. The third part of the structure is
the singleton fusion policy itself. It has constructs that
are slight generalizations of VDL’s exclusion and
collation states, which discard some ballots and then
create the output ballot, respectively. Some examples of
exclusion primitives are to exclude: furthest from mean,
highest n%, and all but distance k from mean. Some
examples of collation are: mean, majority, and median.
Like the VDL, it also supports confidence values to
indicate how good the output is believed to be.

4.2 The Wrappers

The inner wrapper controls when a particular fusion
algorithm can be executed, namely when enough ballots
have arrived to make the policy eligible to be used. The
inner wrapper uses a table-driven approach where values
are provided for percentages, quantities, time, and timeout
values. These different fields help determine when
appropriate number of ballots have arrived and when
timeouts should be called.

The outer wrapper is used to describe which policies
are eligible to be used, and in what order. It also employs
a table-driven approach similar to the inner wrapper. It
holds more general fields than the inner wrapper so that
inner wrapper values can be bypassed when necessary.
The wrapper’s fields let it choose and skip appropriate
policies and also can be programmed to defer using a
given algorithm later when conditions are more
appropriate for it.

4.3 The Policy Chooser

The role of the Policy Chooser is to take the
information on the start of a fusion session and the current
policy information and choose a policy to attempt to run.
Once a policy is chosen, control is handed to the Policy
Runner.

Policy
Chooser

Policy
Runner

Policy 1

Policy 2

Policy 3

Policy N

Retry
Results

To FSS

Control
Ballot

Init Ballot
Input

Output

Figure 2. Fusion Core overview

A policy is chosen by the value or values that are
stored inside the policy wrappers type field. Policies may
be enabled or disabled (included or excluded from being
eligible for execution) based on their outer wrappers.
When a policy disabled it cannot be activated again until
the fusion session has been completed. The policies are
also in a specific order that has been predetermined by the
Fusion Manager. The Chooser simply chooses a policy
based what the policy parameters are, on its order, and if
it is currently able to run. If all the policies are turned off,
then the Chooser drops to a default policy that is then run.
This policy always has a result to return.

4.4 Multidimensional Data Fusion

Mr. Fusion supports multidimensional data fusion,
operating on more than one parameter for a given ballot.
For example, a CORBA method with a return value and
two out parameters would have three values in each
ballot that could be voted on, as would a sensor providing
three distinct values.

Mr. Fusion supports multidimensional data fusion in
the following four ways, listed most restrictive first.

1. The output ballot must be one of the input
ballots, which in turn must be “equal” to a given
threshold of the total ballots (typically over two-
thirds).

2. The output ballot is the one of the input ballots
that received the best “score” by a per-parameter
ranking of the ballots.

3. The output ballot contains values from input
ballots, but the parameters are chosen as “best”
from each parameter and thus the output ballot
may not be one of the input ballots.

4. The output ballot has no restrictions on it, for
example its values may not be found in any input
ballot but rather may computed by an operation
such as mean.

The first two ways are useful in situations where the
output ballot must be one of the inputs, which is true for
example for most uses of actively replicated servers (it is
dangerous to assume otherwise unless it is established that

the semantics of the particular application do not require
it). The first way is further restrictive in situations where
Byzantine fault tolerance is required. It is the strategy for
example hardcoded in [13]. The third and fourth ways
relax the restrictions of the first two. All of these 4
strategies use a generalized and flexible technique to rank
the parameters based on either value or time, or both, and
a number of variations of each strategy is possible.

5 Fusion Status Service

The Fusion Status Service (FSS) is a performance
monitoring service for the Fusion Core and Fusion Virtual
Machine. The FSS provides an aggregate view of the
performance of each policy, vote, and voting group
member. This information is important to building a
more secure and more reliable fusion system.

5.1 FSS

The FSS is a multidimensional database (MDB)
[11,12]. An MDB is a tool that allows a user to “fly-
around” and get different views of the same aggregate
data (i.e., sum or count data). A multidimensional
database has one or more dimensions. The FSS MDB for
the replicated server scenario has three dimensions: Time,
Source, and the Status of each vote.

Each dimension consists of a hierarchy of related
categories. A category is a system of measurement, and
is configurable by creating a text input file describing the
category. For example, the Source dimension is used for
grouping replicas by spatial position. Figure 3 shows
example high-level categories in the spatial dimension.
The categories are Geographic Location, Internet
Hierarchy, and Logical Grouping; all start with the base
Replica ID and generalize from there in the ways depicted
in the figure. Each box in Figure 3 represents a category
or subcategory, where the name of the category or
subcategory is given in bold font. Example values are
shown in parentheses below this name

A category consists of individual measurements, which
are called units. Units high in the hierarchy are

Replica Id
(Rank 5)

City
(Pullman)

County
(Whitman)

State
(Wash.)

Country
(USA)

Continent
(North America)

Host
(bakken.eecs.wsu.edu)

Domain3
(eecs.wsu.edu)

Domain2
(wsu.edu)

Domain1
(.edu)

Source Group
(Bank1’s ATM Server)

Meta-Group
(Bank1’s Servers)

Meta-Meta-Group
(All Bank’s Servers)

Geographical

Internet

Logical (App-Level)

{

{
{

Location

Hierarchy

Groupings
Figure 3. FSS spatial categories example

aggregations of those lower in the hierarchy. The utility
of the hierarchical organization is that the user can easily
navigate among high and low precision views of the same
aggregate data using drill-down and roll-up. Drill-down
is an operation that increases the precision of aggregate
data being viewed while roll-up decreases the precision.
The FSS builds, maintains, and manages, an MDB of
fusion session information. Figure 4 shows an example of
aggregating the statuses and averaging the fusion session
time for a group of replicas. These values can be
aggregated further to calculate the total number of late
and rejected replies and the total average of the fusion

session time of all the replicas in the entire fusion group,
which might span multiple hosts. Figure 5 shows the
three dimensions in the FSS MDB, and the value at a
single unit in the hierarchy with the coordinates Time:
39s, Status: too late, and Replica ID: 8.

The Time dimension has categories for Minute, Hour,
and Day. Finally, the Status dimension groups the
replicas depending on status of the votes produced by
them. The unit of this dimension is a status of the result
generated by the replica (for example an error code or
other lateness metric).

5.2 Example

Figure 6 shows the FSS MDB interface built using the
prototype developed in the incomplete data cube project
[7, 8]. This interface is a web accessible PERL script (a
Java applet interface is also available). In the example,
data has been collected from three hosts

(dyreson.eecs.wsu.edu, dyreson2.eecs.wsu.edu and
bakken.eecs.wsu.edu) over the period of time that spans
from the year 1995 until 1997. The example shows the
result of a query that retrieves all the network-related
problems for the host ‘dyreson.eecs.wsu.edu’ during the
year ‘1997’. The set of possible network-related problems
consists of two elements: ‘Slow Network’ and
‘Unreachable Host’. According to the query result the
host had one ‘Slow Network’ error and no ‘Unreachable
Host’ errors during the entire year (the counts are
artificially low because the data is test data).

Data can be retrieved from the FSS MDB for any
specified categories and units. For example, in the
categories chosen are ‘Host’, ‘Years’, and ‘Network
Reason’ for the Replica, Time, and Status dimensions,
respectively. The corresponding units chosen are
‘dyreson.eecs.wsu.edu’, ‘1997’ and ‘All’. A user
interested in further details could roll-up to look at an
overall count for all hosts or drill-down to obtain a count
for each month in 1997.

6 Acknowledgements

This research was funded by the DARPA OASIS
program via a subcontract to NAI Labs, contract F30602-
00-C-0183. We thank Hien Tran and Ty Palmer for their
help with this various aspects of Mr. Fusion plus the NAI
Labs ITDOS team for their feedback and encouragement
on this research.

References

[1] Bakken, D. “Middleware”, Chapter in Encyclopedia of

Distributed Computing, J. Urban and P. Dasgupta, Eds.,
Kluwer Academic Publishers, 2002, to appear. Available at
http://www.eecs.wsu.edu/~bakken/middleware.pdf.

[2] Bass, T. “Intrusion Detection Systems and Multisensor
Data Fusion”, Communications of the ACM, 43(4), April
2000, 99-105.

[3] Birman, K., Hayden, M., Ozkasap, O., Xiao, Z., Budia, M.,
and Minsky, Y. “Bimodal Multicast”, ACM Transactions
on Computer Systems, 17(2), May 1999, 41-88.

Average Fusion Session Time: 7 sec
Number of Late Replies: 2
Number of Rejected Replies: 1

Status: Rejected
Fusion Session Time: 4 sec

Status: Too Late
Fusion Session Time: 8 sec

Status: Too Late
Fusion Session Time: 9 sec

Figure 4. Aggregating Fusion Core data

 Send Req. Time:10ms
 Calculation Time:100s
 Send Reply Time:8ms
 Result: 23 Time

Replica
ID

Replic ID: 8

Time: 39s

Status Status: Too Late

Figure 5. Depiction of the FSS MDB

[4] Bakken, D. and Zhan, Z. and Jones, C. and Karr, D.
“Middleware Support for Voting and Data Fusion”, in
Proceedings of the International Conference on
Dependable Systems and Networks (DSN-2001),
IEEE/IFIP, Göteborg, Sweden, July 1-4, 2001, 453-462.

[5] Chen, L. “Neural Network Approaches for Estimating
Margins in Power System Voltage Security Analysis”, MS
Thesis, Washington State University, August 2000.

[6] Cukier, Michel and Ren, Jennifer and Sabnis, Chetan and
Henke, David and Pistole, Jessica, and Sanders, William,
and Bakken, David and Berman, Mark and Karr, David and
Schantz, Richard, “AQuA: An Adaptive Architecture That
Provides Dependable Distributed Objects”, in Proceedings
of the Seventeenth Symposium on Reliable Distributed
Systems (SRDS-17), IEEE, October 1998, 245-253.

[7] Dyreson, C. “Information Retrieval from an Incomplete
Data Cube.” In Proceedings of the Conference on Very
Large Databases (VLDB), Mumbai, India, September
1996, pp. 532-543.

[8] Dyreson, Curtis, “Using an Incomplete Data Cube as a
Summary Data Sieve.” Data Engineering Bulletin, 20(1).
March 1997, 19-26.

[9] Hall, D. and Llinas, J. “Handbook of Multidata Sensor
Fusion”, CRC Press, 2001.

[10] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. and
Pister, K. “System Architecture Directions for Networked
Sensors”, in Proceedings of the Ninth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IX), 93-104,
ACM SIGPLAN, November 2000.

[11] Kimball R. The Data Warehouse Toolkit: Practical
Techniques for Building Dimensional Data Warehouses.
John Wiley & Sons, 1996.

[12] Mendelzon, A. (2001). Data Warehousing and OLAP: a
Research-Oriented Bibliography (in progress).
http://www.cs.toronto.edu/~mendel/dwbib.html. Current as
of November, 2001.

[13] McDonnel, D and Neibuhr, B. and Matt, B. and Sames, D.
and Tally, Gregg and Wang, S. and Whitmore, B and
Bakken, D. “Developing a Heterogeneous Intrusion-
Tolerant CORBA System”, to appear in Proceedings of the
International Conference on Dependable Systems and
Networks (DSN-2002), Washington, DC, June 2002.

[14] Narasimhan, P., Moser, L., and Melliar-Smith, M. “Strong
Replica Consistency for Fault-Tolerant CORBA
Applications”, Journal of Computer System Science and
Engineering, Spring 2002, to appear.

[15] Parameswaran, R., Blough, D., and Bakken, D. “A
Preliminary Investigation of Precision vs. Fault Tolerance
Trade-offs in Voting Algorithms”, Fast Abstract in
Supplement of the International Conference on Dependable
Systems and Networks (DSN-2001), Göteborg, Sweden,
July, 2001.

[16] van Renesse, R. “Scalable and Secure Resource Location”,
In Proceedings of the Hawaii International Conference on
System Sciences, January, 2000, Maui, Hawaii.

[17] Walz, E. and Llinas, J. “Multisensor Data Fusion”, Artech
House, Boston, 1990.

Figure 6 FSS MDB interface

