

Lecture Notes in Computer Science 2426, Advances in Object-Oriented Systems,
Proceedings of EWIS 2002, Montpellier, France, September, 2002, pp. 187-196.

Copyright Springer-Verlag 2002. All rights reserved.

Warp-Edge Optimization in XPath

Haiyun He and Curtis Dyreson

 School of EE and Computer Science
Washington State University, Pullman, WA 99164-2752

{ hhe, cdyr eson} @eecs. wsu. edu
ht t p: / / eecs. wsu. edu/ ~cdyr eson

Abstract. We describe the design and preliminary analysis of an optimization
technique for XPath called warp-edge optimization. The XPath data model is a
tree-like data model that has an edge from an element to each component in the
content of that element. The edges are traversed in the evaluation of an XPath
expression. A warp edge is an edge that is something other than a parent to
child edge, i.e., an edge from an element to a sibling or to a grandchild. Warp
edges can be dynamically generated and stored during query evaluation to im-
prove the efficiency of future queries. We describe the implementation of warp-
edge optimization as a layer on top of Xalan, the XPath evaluation engine from
Apache. Experiments demonstrate that in the evaluation of some XPath expres-
sions, the use of warp edges results in substantial savings of time.

1 Introduction

The explosive growth of the World-wide Web (web) has lead to an increase in the
number of organizations that use the Extensible Markup Language (XML) to ex-
change data [1]. XML is a markup language for specifying the structure and semantics
of text data and documents. XML avoids common pitfalls in language design, is ex-
tensible, platform-independent, and supports internationalization [2].

There are several query languages for XML data collections. Examples include
Lorel [3], XQuery [4], XML-QL [5], and XSL Transformations (XSLT) [6]. An im-
portant component in many of these languages, especially those promulgated by the
W3C, is XPath [7]. XPath is a language for addressing parts of an XML document.
For instance the XPath expression ‘ (/ / par agr aph) [5] ’ locates the fifth paragraph
element in a document. XPath expressions are a core component of all XSLT and
XQuery programs.

In this paper, we propose an optimization technique for XPath called warp-edge op-
timization. The XPath data model is a tree-like data model that has an edge from an
element to each component in the content of that element. The edges are traversed in
the evaluation of an XPath expression. A warp edge is an edge that is something other
than a parent to child edge, i.e., an edge from an element to a sibling or to a grand-
child. Warp edges can be generated and stored during query evaluation to improve the
efficiency of future queries. In the evaluation of some XPath expressions, the use of

Lecture Notes in Computer Science 2426, Advances in Object-Oriented Systems,
Proceedings of EWIS 2002, Montpellier, France, September, 2002, pp. 187-196.

Copyright Springer-Verlag 2002. All rights reserved.

warp edges results in substantial savings of time since the warp edges connect nodes
separated by two or more non-warp edges.

This paper makes several contributions. First, we discuss how to support warp-
edge optimization by dynamically caching query results. Second, we implement the
technique as a layer on top of, but separate from, an XPath evaluation engine. The
important advantage offered by a layered architecture is that the warp-edge optimiza-
tion layer can be combined with any XPath evaluation engine. Hence, we do not have
to modify an XPath evaluation engine to optimize XPath queries. Third, we report on
some experiments that demonstrate the efficacy of the technique.

The remainder of this paper is organized as follows. In the next section we motivate
the technique. We then briefly sketch the implementation of the technique and ex-
perimental results.

2 Motivation

In this section, an example is provided to demonstrate warp-edge optimization. Con-
sider a sample XML document shown in Figure 1. The fragment shows part of a
novel, and is short for expository purposes. The document root is the <doc> element.
Within the root are a title and a chapter. The chapter also has a title and has several
sections. Each section has a title, a paragraph and a note.

<doc>
 <t i t l e>A Tal e of Two Ci t i es</ t i t l e>
 <chapt er >
 <t i t l e>The Jour ney</ t i t l e>
 <sect i on>
 <t i t l e>The Begi nni ng</ t i t l e>
 <par a>I t was t he best of t i mes…</ par a>
 <not e>A f amous openi ng l i ne. </ not e>
 </ sect i on>
 <sect i on>
 <t i t l e>The Mi ddl e</ t i t l e>
 <par a>The second ci t y was
 <emph>squal i d</ emph> i n a t epi d way.
 </ par a>
 <not e>Thi s not qui t e so f amous. </ not e>
 </ sect i on>
 </ chapt er >
</ doc>

Figure 1 A sample XML document

The XPath data model for the sample document is depicted in Figure 2. The data
model is constructed when the document is parsed. Details of the model extraneous to
the example have been omitted (e.g., text nodes); only element nodes are shown. The
“ id” of the node is shown within the node.

Assume that a user of the digital library retrieves all of the sections by submitting
the query “ / / sect i on” . The warp edges created by the query are shown as dashed

Lecture Notes in Computer Science 2426, Advances in Object-Oriented Systems,
Proceedings of EWIS 2002, Montpellier, France, September, 2002, pp. 187-196.

Copyright Springer-Verlag 2002. All rights reserved.

lines in Figure 2. The warp edges connect the root with each section since the query
starts at the document root and terminates at each section. The size of the sample
document is small and the sections can be found quickly, but in general the document
could contain thousands of sections.

11

root

doc

title

title

title

chapter

section section

para para note note title

emph

10

12

9

13

0

1

4

2 3

5

6 7 8

/ / sec t i on / / sec t i on

Figure 2 The data model for the sample (warp edges are dashed lines)

XSLT and XQuery programs usually contain many XPath expressions. Assume
that queries are subsequently given to retrieve the section titles,
“ / / sect i on/ t i t l e” , and to retrieve the chapters that contain sections,
“ / / chapt er [sect i on] ” . Both queries can make use of the warp edges. The
first query can traverse the warp edges to locate sections quickly, and then drop down
to the title nodes. By using the warp edges the four edges on the path to each section
node can be skipped. Not a big savings, but this document is quite small. Section 4
demonstrates the effectiveness of the technique on large trees. The second query can
warp to sections, and then move up to find chapter nodes. This will be unlikely to
result in a faster evaluation since four edges need to be traversed using both evaluation
strategies (with and without warp edges). Sometimes following warp edges does not
save time.

Related Work

There are two common technologies for query optimization in semistructured data-
bases and XML query languages. The first is to build performance-enhancing data
structures, e.g., indexes, and generate a query evaluation plan utilizing the structures.
Lore has several indexes, such as value and path indexes [8]. Lorel queries can be
compiled into plans that make efficient use of the indexes [9]. Other path indexes
include the t-index [10] and the Index Fabric [11]. For XPath, the Dynamic XML
Engine (DXE) takes advantage of available indexes to accelerate queries [12]. Warp-
edge optimization is similar because it builds a “path index” consisting of the warp

Lecture Notes in Computer Science 2426, Advances in Object-Oriented Systems,
Proceedings of EWIS 2002, Montpellier, France, September, 2002, pp. 187-196.

Copyright Springer-Verlag 2002. All rights reserved.

edges. However, the index is constructed on-demand and in an ad hoc manner, unlike
a DataGuide [13]. The above systems (except DXE) are database systems where the
cost of statically building indexes is small in comparison to the benefits, whereas
warp-edge optimization is applicable to in-memory XML parsing.

The second common technology is to rewrite the query (or batch of queries) to
prune the search space. Gardarin, Gruser and Tang propose a technique to optimize
linear path expressions and produce a cheap query execution plan [14]. Compile-time
path expansion [15] utilizes a DataGuide (a schema) to prune the search space, while
branching path optimization [16] recognizes that queries that follow the same branch
in a tree can share the cost of exploring that branch, as does warp-edge optimization.
Optimization in StruQL [17] combines both indexing and query rewriting. Warp-edge
optimization dynamically implements branching path optimization.

3 Warp-edge Optimization

A warp edge is an edge in the data model that traverses more than one level in the
document tree. The canonical example is an edge to a grandchild node. Typically,
warp edges are added as the result of previous queries. The warp edges can be trav-
ersed during the evaluation of a query

3.1 An Optimization Layer
There are two basic strategies for implementing warp-edge optimization. One ap-

proach is to modify the query evaluation engine to add warp edges to the data model.
The second approach is to add a layer to perform warp-edge optimization above the
legacy system. We adopt the layer approach because it is more flexible when the
underlying system changes and can be implemented on proprietary evaluation engines.
Any legacy system could be used such as Saxon [18], Sablotron [19], XT [20], Micro-
soft’s XML Core Services (MSXML) 4.0, or Xalan [21]. Figure 3 depicts the layered
approach with the Xalan, the XPath evaluation engine from Apache. The warp-edge
layer sits on top of the Xalan package. The layer takes a query and splits it into sev-
eral sub-queries. Some of the sub-queries can be answered from the results of previ-
ous queries that are stored in the layer in an area called the query cache. The sub-
queries that cannot be answered are sent to Xalan for evaluation. Xalan itself is not
modified in any way, rather the layer uses Xalan’s API. The layer processes the re-
sults of the sub-queries to build the result set. The results of sub-queries that generate
new warp edges are stored in the query cache.

Caching the query results induces a set of warp-edges in the underlying data model.
Whenever a new query result is added to the cache, in effect, it represents a corre-
sponding warp edge in the parsed document. The opportunity to reuse query results
increases as more results are added to the query cache.

Lecture Notes in Computer Science 2426, Advances in Object-Oriented Systems,
Proceedings of EWIS 2002, Montpellier, France, September, 2002, pp. 187-196.

Copyright Springer-Verlag 2002. All rights reserved.

Xalan

API

Warp-edge layer

query

Data model

sub-queries

result set

. . .

. . .

Query cache

Figure 3 Layer approach with Xalan

3.2 Prefix Matching
A query is evaluated by trying to find the longest matching prefix in the query cache.
To facilitate the matching, the query cache is organized as a collection of trees called
query cache trees (QCTs). When a query is issued, the layer first looks for the query
in the cache. If the result is already there, the result is returned immediately because a
new XPath query might be the same as an old one. On the other hand, a new XPath
query can be different from all old queries, but we can still take advantage of the
cached query results. The trick here is that we can use the cached result to “construct”
the result for a new XPath query. For example, the new query may be an extension of
an old query or may contain a part that has been evaluated before. The cached result is
not returned immediately. Instead, it can be used as a temporary result to facilitate the
evaluation of new query.

There are three outcomes to the prefix match.
1) Full Cache Hit: If the entire query is matched then the query is totally the

same as a previous query and the result is already available.
2) Partial Cache Hit: A prefix of the query (i.e., the first few steps) match, then

the cached prefix becomes the context for further evaluation of the remaining
steps in the query. Prefix matching is performed for the rest of the steps in
the query for each node in the context.

3) Cache Miss: This happens when a new query starts with a different step than
all previous queries. A single step in the query is evaluated to establish a con-
text for subsequent steps. Then the prefix match is tried against the remain-
ing steps in the query.

Lecture Notes in Computer Science 2426, Advances in Object-Oriented Systems,
Proceedings of EWIS 2002, Montpellier, France, September, 2002, pp. 187-196.

Copyright Springer-Verlag 2002. All rights reserved.

At worst, the query is evaluated one step at a time by evaluating each step on the
underlying query engine (every step results in a cache miss). Ideally, sequences of
one or more steps can be found in the query cache (a cache hit). Then the cached
result can be used without consulting the underlying query evaluation engine.

4 Empirical Analysis

In this section, we describe a preliminary set of experiments. Our goal is to test warp-
edge optimization to determine whether it works under “ ideal” conditions. The ex-
periments involve tests on randomly generated data. We describe the parameters of
each experiment in detail. Finally, we analyze the results.

4.1 Experimental Environment

We conducted the experiments on a Pentium PC (Dell Precision 340). It has an Intel®
Pentium® 4 CPU 1700MHz, 512MB RAM and 37.2GB disk space. The PC runs
Windows XP Professional Version 2002. We installed JavaTM 2 v1.3.1_02 and Xalan-
Java v2.3.1 for testing. The XML Parser used is Xerces-Java v2, which is available
with the Xalan-Java package. We isolated the machine for testing. Only the test pro-
gram and normal background processes are running during the testing period.

4.2 Random Experiment

We generated random XML documents for testing with the following configurable
parameters.

• The children of root factor – This factor represents the number of children of
the document root. It controls the top-level bushiness of the XPath data
model tree.

• The depth factor – This factor represents the level of nesting of elements in
the XML document. It controls the depth of the data model tree.

• The bushy factor - This factor describes the number of children in a non-leaf
node in the data model tree. The bushiness can be fixed or chosen randomly
from a range.

The tree is made random in two ways. First, the depth and bushiness of the tree can

be made random to test with short, busy trees or deep, skinny trees, or some combina-
tion thereof. Because of limited memory, the trees are capped in size at approximately
12,000,000 nodes. Second, each level in the tree consists (almost) entirely of the same
kind of elements, e.g., level one consists of <A> elements, level two of elements,
etc. However, we randomly convert up to 10% of the elements at each level into
“magic” elements; a magic element is appended with a number e.g., <B1>. In a

Lecture Notes in Computer Science 2426, Advances in Object-Oriented Systems,
Proceedings of EWIS 2002, Montpellier, France, September, 2002, pp. 187-196.

Copyright Springer-Verlag 2002. All rights reserved.

query, the magic elements can be used for node tests to limit the result-set size, e.g.,
the query ‘ / / B/ C’ will return far more nodes than ‘ / / B1/ C1’ .

4.2.1 High match probability experiment
In this experiment, we tested the performance using XPath queries that have high
match probabilities, i.e., there is a greater chance to retrieve a large result set. We
tested the following query batches on the randomly generated XML documents. The
query cache is updated after each batch.

Bat ch 1: / descendant - or - sel f : : C
 / descendant - or - sel f : : E

Bat ch 2: / descendant - or - sel f : : B/ chi l d: : C
 / descendant - or - sel f : : D/ chi l d: : E

Bat ch 3: / descendant - or - sel f : : C/ chi l d: : D
 / descendant - or - sel f : : C/ descendant - or - sel f : : E
 / descendant - or - sel f : : C/ descendant - or - sel f : : F

The above query batches only include “pure elements” and therefore have large re-

sult-sets. This simulates the situation where a user requests popular information from
an XML document. Furthermore, the batches are designed to favor warp-edge opti-
mization since the last two query batches utilize the warp edges. We tested a range of
root children, depth factors and bushy factors independently, and averaged the results
of the tests on runs of five random trees.

In the first experiment, we varied the number of root children and fixed the depth
factor to be 6 and bushy factor to be 3. The turnaround time result is shown in the left-
hand graph in Figure 4 (including the time to update the QCT). The right-hand graph
shows the space overhead of the QCT.

0

4

8

12

0 100 200 300

of Root Children

T
im

e
(s

ec
on

ds
)

Normal

Warp-edge
optimized
QCT Update
Time

0

10000000

20000000

30000000

40000000

0 100 200 300

of Root Children

Sp
ac

e
(b

yt
es

)

Normal

Warp-edge
optimized

Figure 4 Varying the number of root children

Lecture Notes in Computer Science 2426, Advances in Object-Oriented Systems,
Proceedings of EWIS 2002, Montpellier, France, September, 2002, pp. 187-196.

Copyright Springer-Verlag 2002. All rights reserved.

Next, we varied the depth factor but fixed the number of root children to be 50 and
the bushy factor to be 3. Then the XML document is moderately bushy with a moder-
ate number of sub-trees, but varies from shallow to deep. We obtain the graphs in
Figure 5

0

4

8

12

16

20

0 2 4 6 8 10

Depth factor

T
im

e
(s

ec
on

ds
)

Normal

Warp-edge
optimized
QCT Update
Time

0

20000000

40000000

60000000

0 2 4 6 8 10

Depth factor

Sp
ac

e
(b

yt
es

)

Normal

Warp-edge
optimized

Figure 5 Varying the depth factor

Third, we varied the bushy factor and fixed the other parameters, i.e. the number of

root children is 50 and the depth factor is 5. Then the XML document will have a
moderate number of sub-trees and be of moderate depth, but will vary in bushiness
from skinny to fat trees. By this means, we can see how our approach performs with a
change in bushiness. The results are shown in Figure 6.

0

10

20

30

0 2 4 6 8

Bushy Factor

T
im

e(
se

co
nd

s)

Normal

Warp-edge
optimized

QCT Update
Time

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

0 2 4 6 8

Bushy Factor

Sp
ac

e
(b

yt
es

)

Normal

Warp-edge
optimized

Figure 6 Varying the bushy factor.

Lecture Notes in Computer Science 2426, Advances in Object-Oriented Systems,
Proceedings of EWIS 2002, Montpellier, France, September, 2002, pp. 187-196.

Copyright Springer-Verlag 2002. All rights reserved.

The turnaround time for query evaluation shows that the optimization is working
best for deeper and bushier trees. In the first experiment, the optimization approxi-
mately halves the time needed for query evaluation at a modest increase in the amount
of space. In the second experiment, although query performance degrades exponential
(as the size of the tree increases exponentially), the non-optimized query time in-
creases much faster than that of the optimized query. For very deep trees, when the
depth reaches 8, the optimization provides a five-fold increase in query performance.
Again, only a small amount of additional space is needed for the optimization. The
third experiment, testing trees of varying bushiness, confirms that the optimization can
improve query performance when more warp edges are utilized in the larger and bush-
ier trees.

The graphs also depict the time needed to update the query cache trees (QCT). The
update time is not counted in the turnaround time. The cost however, is usually quite
trivial. The reason is that the QCT update just generates a mapping between the query
and the corresponding result set, which is not a time-consuming process.

Overall, the experiments show that while warp-edge optimization needs a small
amount of additional space, it can improve query performance for large, deep, and
bushy trees.

5 Conclusions and Future Work

In this paper we described the design and analysis of an optimization technique for
XPath called warp-edge optimization. Warp edges can be dynamically generated and
stored during query evaluation to improve the efficiency of future queries. We im-
plemented warp-edge optimization as a layer on top of Xalan, the XPath evaluation
engine from Apache. Experiments demonstrate that in the evaluation of some XPath
expressions, the use of warp edges results in substantial savings of time at a modest
increase in space. The benefit of the layered implementation is that warp-edge opti-
mization can be wrapped around any back-end XPath evaluation engine. Our ex-
periments show that the cost of the layer is small.

In future, we plan to develop query rewrite rules to support more effective use of
the cache in a manner similar to rewriting database queries using materialized views.
Also, since the cache independently maintains some information, we believe that
query caching can be used to provide partial answers when the original document is no
longer available or expensive to query directly.

References

1. World Wide Web Consortium. Extensible Markup Language (XML).
http://www.w3c.org/XML. Current as of October 2000.

2. World Wide Web Consortium. XML in 10 points. http://www.w3c.org/XML/1999/XML-in-
10-points. Current as of November 2001.

Lecture Notes in Computer Science 2426, Advances in Object-Oriented Systems,
Proceedings of EWIS 2002, Montpellier, France, September, 2002, pp. 187-196.

Copyright Springer-Verlag 2002. All rights reserved.

3. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database Manage-
ment System for Semistructured Data. SIGMOD Record, 26(3):54-66, September 1997.

4. World Wide Web Consortium. XQuery 1.0: An XML Query Language.
http://www.w3c.org/TR/xquery/. Current as of April 2002.

5. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A query language
for XML. WWW10, Toronto, CA.

6. World Wide Web Consortium. XSL Transformations (XSLT) Version 1.0.
http://www.w3c.org/TR/1999/REC-xslt-19991116. Current as of November 1999.

7. World Wide Web Consortium. XML Path Language (XPath) Version 1.0.
http://www.w3c.org/TR/xpath. Current as of April 2002.

8. J. McHugh and J. Widom. Query Optimization for XML. In Proceedings of VLDB, Edin-
burgh, Scotland, September 1999.

9. J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajaraman. Indexing Semistructured
Data. Technical Report, Stanford University, Database Group, January 1998.

10. T. Milo and D. Suciu. Index structures for path expressions. In ICDT’99, Jerusalem, Israel,
January 10-12, 1999, pages 277-295, 1999.

11. B. Cooper, N. Sample, M. Franklin, G. Hjaltason, and M. Shadmon. A Fast Index for
Semistructured Data. In Proceedings of VLDB, September 2001, pp. 341-350.

12. Exceloncopr. Optimizing XPath Expressions. http://support.exceloncorp.com. Current as of
May 2001.

13. R. Goldman and J. Widom. DataGuides: Enabling query formulation and optimization in
semistructured databases. In Proceedings of VLDB, August 1997, pp. 436-445.

14. G. Gardarin, J.Gruser, and Z. Tang. Cost-based Selection of Path Expression Processing
Algorithms in Object-oriented Databases. In Proceedings of VLDB, Bombay, India, pp. 390-
401.

15. J.McHugh and J. Widom. Compile-Time Path Expansion in Lore. In Proceedings of the
Workshop on Query Processing for Semistructured Data and Non-Standard Data Formats,
Jerusalem, Israel, January 1999.

16. J. McHugh and J.Widom. Optimizing Branching Path Expressions. Technical report, Stan-
ford University, Database Group, June 1999.

17. M. Fernandez, D. Florescu, J.Kang, A. Levy, and D. Suciu. Catching the Boat with Strudel:
Experiences with a Web-site Management System. In Proceedings of SIGMOD, Seattle,
Washington, June 1998, pp. 414-425.

18. Michael Kay. SAXON The XSLT Processor. http://saxon.sourceforge.net. Current as of
February 2002.

19. Ginger Alliance. Sablotron XSLT, DOM and XPath processor.
http://www.gingerall.com/charlie/ga/xml/p_sab.xml. Current as of March 2002.

20. James Clark. XT. http://www.jclark.com/xml/xt.html. Current as of November 1999.
21. Apache XML Project. Xalan-Java version 2.3.1. http://xml.apache.org/xalan-j/index.html.

Current as of March 2002.

