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Abstract. We describe the design and preliminary analysis of an optimization 
technique for XPath called warp-edge optimization.  The XPath data model is a 
tree-like data model that has an edge from an element to each component in the 
content of that element.  The edges are traversed in the evaluation of an XPath 
expression.  A warp edge is an edge that is something other than a parent to 
child edge, i.e., an edge from an element to a sibling or to a grandchild.  Warp 
edges can be dynamically generated and stored during query evaluation to im-
prove the efficiency of future queries.  We describe the implementation of warp-
edge optimization as a layer on top of Xalan, the XPath evaluation engine from 
Apache.  Experiments demonstrate that in the evaluation of some XPath expres-
sions, the use of warp edges results in substantial savings of time. 

1   Introduction 

The explosive growth of the World-wide Web (web) has lead to an increase in the 
number of organizations that use the Extensible Markup Language (XML) to ex-
change data [1]. XML is a markup language for specifying the structure and semantics 
of text data and documents. XML avoids common pitfalls in language design, is ex-
tensible, platform-independent, and supports internationalization [2]. 

There are several query languages for XML data collections.  Examples include 
Lorel [3], XQuery [4], XML-QL [5], and XSL Transformations (XSLT) [6].  An im-
portant component in many of these languages, especially those promulgated by the 
W3C, is XPath [7].  XPath is a language for addressing parts of an XML document.  
For instance the XPath expression ‘ (/ / par agr aph) [ 5] ’  locates the fifth paragraph 
element in a document.  XPath expressions are a core component of all XSLT and 
XQuery programs. 

In this paper, we propose an optimization technique for XPath called warp-edge op-
timization.  The XPath data model is a tree-like data model that has an edge from an 
element to each component in the content of that element.  The edges are traversed in 
the evaluation of an XPath expression.  A warp edge is an edge that is something other 
than a parent to child edge, i.e., an edge from an element to a sibling or to a grand-
child.  Warp edges can be generated and stored during query evaluation to improve the 
efficiency of future queries.  In the evaluation of some XPath expressions, the use of 
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warp edges results in substantial savings of time since the warp edges connect nodes 
separated by two or more non-warp edges. 

This paper makes several contributions.  First, we discuss how to support warp-
edge optimization by dynamically caching query results.  Second, we implement the 
technique as a layer on top of, but separate from, an XPath evaluation engine. The 
important advantage offered by a layered architecture is that the warp-edge optimiza-
tion layer can be combined with any XPath evaluation engine.  Hence, we do not have 
to modify an XPath evaluation engine to optimize XPath queries.  Third, we report on 
some experiments that demonstrate the efficacy of the technique. 

The remainder of this paper is organized as follows. In the next section we motivate 
the technique.  We then briefly sketch the implementation of the technique and ex-
perimental results. 

2   Motivation 

In this section, an example is provided to demonstrate warp-edge optimization. Con-
sider a sample XML document shown in Figure 1. The fragment shows part of a 
novel, and is short for expository purposes. The document root is the <doc> element.  
Within the root are a title and a chapter. The chapter also has a title and has several 
sections. Each section has a title, a paragraph and a note. 

 
<doc> 
  <t i t l e>A Tal e of  Two Ci t i es</ t i t l e> 
  <chapt er > 
    <t i t l e>The Jour ney</ t i t l e> 
    <sect i on> 
      <t i t l e>The Begi nni ng</ t i t l e> 
      <par a>I t  was t he best  of  t i mes…</ par a> 
      <not e>A f amous openi ng l i ne. </ not e> 
    </ sect i on> 
    <sect i on> 
      <t i t l e>The Mi ddl e</ t i t l e> 
      <par a>The second ci t y was 
        <emph>squal i d</ emph> i n a t epi d way.  
      </ par a> 
      <not e>Thi s not  qui t e so f amous. </ not e> 
    </ sect i on> 
  </ chapt er > 
</ doc> 

Figure 1 A sample XML document 

The XPath data model for the sample document is depicted in Figure 2.  The data 
model is constructed when the document is parsed.  Details of the model extraneous to 
the example have been omitted (e.g., text nodes); only element nodes are shown.  The 
“ id”  of the node is shown within the node. 

Assume that a user of the digital library retrieves all of the sections by submitting 
the query “ / / sect i on” .  The warp edges created by the query are shown as dashed 
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lines in Figure 2.  The warp edges connect the root with each section since the query 
starts at the document root and terminates at each section.  The size of the sample 
document is small and the sections can be found quickly, but in general the document 
could contain thousands of sections.  
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Figure 2 The data model for the sample (warp edges are dashed lines) 

XSLT and XQuery programs usually contain many XPath expressions.  Assume 
that queries are subsequently given to retrieve the section titles, 
“ / / sect i on/ t i t l e” , and to retrieve the chapters that contain sections, 
“ / / chapt er [ sect i on] ” .    Both queries can make use of the warp edges.  The 
first query can traverse the warp edges to locate sections quickly, and then drop down 
to the title nodes.  By using the warp edges the four edges on the path to each section 
node can be skipped.  Not a big savings, but this document is quite small.  Section 4 
demonstrates the effectiveness of the technique on large trees.  The second query can 
warp to sections, and then move up to find chapter nodes.  This will be unlikely to 
result in a faster evaluation since four edges need to be traversed using both evaluation 
strategies (with and without warp edges).  Sometimes following warp edges does not 
save time. 

Related Work 

There are two common technologies for query optimization in semistructured data-
bases and XML query languages.  The first is to build performance-enhancing data 
structures, e.g., indexes, and generate a query evaluation plan utilizing the structures. 
Lore has several indexes, such as value and path indexes [8]. Lorel queries can be 
compiled into plans that make efficient use of the indexes [9].  Other path indexes 
include the t-index [10] and the Index Fabric [11].   For XPath, the Dynamic XML 
Engine (DXE) takes advantage of available indexes to accelerate queries [12]. Warp-
edge optimization is similar because it builds a “path index”  consisting of the warp 
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edges.   However, the index is constructed on-demand and in an ad hoc manner, unlike 
a DataGuide [13].  The above systems (except DXE) are database systems where the 
cost of statically building indexes is small in comparison to the benefits, whereas 
warp-edge optimization is applicable to in-memory XML parsing.   

The second common technology is to rewrite the query (or batch of queries) to 
prune the search space.   Gardarin, Gruser and Tang propose a technique to optimize 
linear path expressions and produce a cheap query execution plan [14]. Compile-time 
path expansion [15] utilizes a DataGuide (a schema) to prune the search space, while 
branching path optimization [16] recognizes that queries that follow the same branch 
in a tree can share the cost of exploring that branch, as does warp-edge optimization.  
Optimization in StruQL [17] combines both indexing and query rewriting.  Warp-edge 
optimization dynamically implements branching path optimization. 

3   Warp-edge Optimization 

A warp edge is an edge in the data model that traverses more than one level in the 
document tree.  The canonical example is an edge to a grandchild node.  Typically, 
warp edges are added as the result of previous queries.  The warp edges can be trav-
ersed during the evaluation of a query  

3.1   An Optimization Layer 
There are two basic strategies for implementing warp-edge optimization. One ap-

proach is to modify the query evaluation engine to add warp edges to the data model. 
The second approach is to add a layer to perform warp-edge optimization above the 
legacy system.  We adopt the layer approach because it is more flexible when the 
underlying system changes and can be implemented on proprietary evaluation engines. 
Any legacy system could be used such as Saxon [18], Sablotron [19], XT [20], Micro-
soft’s XML Core Services (MSXML) 4.0, or Xalan [21].  Figure 3 depicts the layered 
approach with the Xalan, the XPath evaluation engine from Apache.  The warp-edge 
layer sits on top of the Xalan package.  The layer takes a query and splits it into sev-
eral sub-queries.  Some of the sub-queries can be answered from the results of previ-
ous queries that are stored in the layer in an area called the query cache.  The sub-
queries that cannot be answered are sent to Xalan for evaluation.  Xalan itself is not 
modified in any way, rather the layer uses Xalan’s API.  The layer processes the re-
sults of the sub-queries to build the result set.  The results of sub-queries that generate 
new warp edges are stored in the query cache.   

Caching the query results induces a set of warp-edges in the underlying data model.  
Whenever a new query result is added to the cache, in effect, it represents a corre-
sponding warp edge in the parsed document. The opportunity to reuse query results 
increases as more results are added to the query cache. 
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Figure 3 Layer approach with Xalan 

3.2   Prefix Matching  
A query is evaluated by trying to find the longest matching prefix in the query cache.  
To facilitate the matching, the query cache is organized as a collection of trees called 
query cache trees (QCTs).  When a query is issued, the layer first looks for the query 
in the cache. If the result is already there, the result is returned immediately because a 
new XPath query might be the same as an old one. On the other hand, a new XPath 
query can be different from all old queries, but we can still take advantage of the 
cached query results. The trick here is that we can use the cached result to “construct”  
the result for a new XPath query. For example, the new query may be an extension of 
an old query or may contain a part that has been evaluated before. The cached result is 
not returned immediately. Instead, it can be used as a temporary result to facilitate the 
evaluation of new query. 

There are three outcomes to the prefix match. 
1) Full Cache Hit: If the entire query is matched then the query is totally the 

same as a previous query and the result is already available. 
2) Partial Cache Hit: A prefix of the query (i.e., the first few steps) match, then 

the cached prefix becomes the context for further evaluation of the remaining 
steps in the query.  Prefix matching is performed for the rest of the steps in 
the query for each node in the context. 

3) Cache Miss: This happens when a new query starts with a different step than 
all previous queries. A single step in the query is evaluated to establish a con-
text for subsequent steps.  Then the prefix match is tried against the remain-
ing steps in the query. 
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At worst, the query is evaluated one step at a time by evaluating each step on the 
underlying query engine (every step results in a cache miss).  Ideally, sequences of 
one or more steps can be found in the query cache (a cache hit).  Then the cached 
result can be used without consulting the underlying query evaluation engine. 

4   Empirical Analysis  

In this section, we describe a preliminary set of experiments. Our goal is to test warp-
edge optimization to determine whether it works under “ ideal”  conditions. The ex-
periments involve tests on randomly generated data. We describe the parameters of 
each experiment in detail. Finally, we analyze the results. 

4.1   Experimental Environment 

We conducted the experiments on a Pentium PC (Dell Precision 340). It has an Intel® 
Pentium® 4 CPU 1700MHz, 512MB RAM and 37.2GB disk space. The PC runs 
Windows XP Professional Version 2002. We installed JavaTM 2 v1.3.1_02 and Xalan-
Java v2.3.1 for testing. The XML Parser used is Xerces-Java v2, which is available 
with the Xalan-Java package. We isolated the machine for testing. Only the test pro-
gram and normal background processes are running during the testing period. 

4.2   Random Experiment 

We generated random XML documents for testing with the following configurable 
parameters. 

• The children of root factor – This factor represents the number of children of 
the document root.  It controls the top-level bushiness of the XPath data 
model tree. 

• The depth factor – This factor represents the level of nesting of elements in 
the XML document.  It controls the depth of the data model tree.  

• The bushy factor - This factor describes the number of children in a non-leaf 
node in the data model tree. The bushiness can be fixed or chosen randomly 
from a range. 

 
The tree is made random in two ways.  First, the depth and bushiness of the tree can 

be made random to test with short, busy trees or deep, skinny trees, or some combina-
tion thereof.  Because of limited memory, the trees are capped in size at approximately 
12,000,000 nodes.  Second, each level in the tree consists (almost) entirely of the same 
kind of elements, e.g., level one consists of <A> elements, level two of <B> elements, 
etc.  However, we randomly convert up to 10% of the elements at each level into 
“magic”  elements; a magic element is appended with a number e.g., <B1>.  In a 



 

Lecture Notes in Computer Science 2426, Advances in Object-Oriented Systems, 
Proceedings of EWIS 2002, Montpellier, France, September, 2002, pp. 187-196. 
 
Copyright  Springer-Verlag 2002.  All rights reserved. 

query, the magic elements can be used for node tests to limit the result-set size, e.g., 
the query ‘ / / B/ C’  will return far more nodes than ‘ / / B1/ C1’ .   

4.2.1   High match probability experiment 
In this experiment, we tested the performance using XPath queries that have high 
match probabilities, i.e., there is a greater chance to retrieve a large result set. We 
tested the following query batches on the randomly generated XML documents.  The 
query cache is updated after each batch. 

Bat ch 1:   / descendant - or - sel f : : C 
  / descendant - or - sel f : : E 
 
Bat ch 2:   / descendant - or - sel f : : B/ chi l d: : C 
  / descendant - or - sel f : : D/ chi l d: : E 
 
Bat ch 3:   / descendant - or - sel f : : C/ chi l d: : D 
  / descendant - or - sel f : : C/ descendant - or - sel f : : E 
  / descendant - or - sel f : : C/ descendant - or - sel f : : F 
 

 
The above query batches only include “pure elements”  and therefore have large re-

sult-sets.  This simulates the situation where a user requests popular information from 
an XML document.  Furthermore, the batches are designed to favor warp-edge opti-
mization since the last two query batches utilize the warp edges.  We tested a range of 
root children, depth factors and bushy factors independently, and averaged the results 
of the tests on runs of five random trees. 

In the first experiment, we varied the number of root children and fixed the depth 
factor to be 6 and bushy factor to be 3. The turnaround time result is shown in the left-
hand graph in Figure 4 (including the time to update the QCT).  The right-hand graph 
shows the space overhead of the QCT. 
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Figure 4 Varying the number of root children 
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Next, we varied the depth factor but fixed the number of root children to be 50 and 
the bushy factor to be 3. Then the XML document is moderately bushy with a moder-
ate number of sub-trees, but varies from shallow to deep. We obtain the graphs in 
Figure 5 
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Figure 5 Varying the depth factor 

 
Third, we varied the bushy factor and fixed the other parameters, i.e. the number of 

root children is 50 and the depth factor is 5. Then the XML document will have a 
moderate number of sub-trees and be of moderate depth, but will vary in bushiness 
from skinny to fat trees. By this means, we can see how our approach performs with a 
change in bushiness.  The results are shown in Figure 6. 
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Figure 6 Varying the bushy factor. 
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The turnaround time for query evaluation shows that the optimization is working 
best for deeper and bushier trees. In the first experiment, the optimization approxi-
mately halves the time needed for query evaluation at a modest increase in the amount 
of space.  In the second experiment, although query performance degrades exponential 
(as the size of the tree increases exponentially), the non-optimized query time in-
creases much faster than that of the optimized query.  For very deep trees, when the 
depth reaches 8, the optimization provides a five-fold increase in query performance.  
Again, only a small amount of additional space is needed for the optimization.  The 
third experiment, testing trees of varying bushiness, confirms that the optimization can 
improve query performance when more warp edges are utilized in the larger and bush-
ier trees.    

The graphs also depict the time needed to update the query cache trees (QCT).  The 
update time is not counted in the turnaround time.  The cost however, is usually quite 
trivial.  The reason is that the QCT update just generates a mapping between the query 
and the corresponding result set, which is not a time-consuming process.   

Overall, the experiments show that while warp-edge optimization needs a small 
amount of additional space, it can improve query performance for large, deep, and 
bushy trees.  

5   Conclusions and Future Work 

In this paper we described the design and analysis of an optimization technique for 
XPath called warp-edge optimization.  Warp edges can be dynamically generated and 
stored during query evaluation to improve the efficiency of future queries.  We im-
plemented warp-edge optimization as a layer on top of Xalan, the XPath evaluation 
engine from Apache.  Experiments demonstrate that in the evaluation of some XPath 
expressions, the use of warp edges results in substantial savings of time at a modest 
increase in space.  The benefit of the layered implementation is that warp-edge opti-
mization can be wrapped around any back-end XPath evaluation engine.   Our ex-
periments show that the cost of the layer is small. 

In future, we plan to develop query rewrite rules to support more effective use of 
the cache in a manner similar to rewriting database queries using materialized views.  
Also, since the cache independently maintains some information, we believe that 
query caching can be used to provide partial answers when the original document is no 
longer available or expensive to query directly. 
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