

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

Adding Valid Time to XPath

Shuohao Zhang and Curtis E. Dyreson

School of Electrical Engineering and Computer Science
Washington State University

Pullman, WA, United State of America
(szhang2, cdyr eson) @eecs. wsu. edu

Abstract. In this paper we extend the XPath data model and query language to
include valid time. XPath is a language for specifying locations within an XML
document. We extend XPath’s data model by adding to each node a list of
disjoint intervals or instants that represents the valid time. The valid time for a
node is constrained to be a subset of the valid time for a node’s parent. We
extend the XPath query language with an axis to access nodes in a valid-time
view of the valid time for a node. The view is a calendar-specific formatting of
the valid time in XML. By rendering the time in XML, we can reuse non-
temporal XPath to extract the desired information within a valid-time axis. The
extension is fully backwards-compatible with XPath.

1 Background

The World Wide Web (“web”) is the largest and most frequented network of in-
formation resources. The majority of the documents on the web conform to the Hy-
perText Markup Language (HTML) [1] but the Extensible Markup Language (XML)
[2] is expected to replace HTML as the next-generation markup language for web
documents and data. There are several proposed query languages for XML such as
Quilt [3], XQL [4], XML-QL [5], and XQuery [6], which is a W3C recom-
mendation. XPath [7] is a subset of XQuery (and of several other recommendations
by the W3C, e.g., XSLT [8]). XPath is a language to locate information in an XML
document. Every XQuery query contains XPath expressions [9]. XPath operates on a
tree-like data model, which is a logical-level data model of an XML document. XPath
is a compact, expression-based grammar with a non-XML syntax.

XPath currently lacks temporal semantics. Time is pervasive in the real world. All
events happen at some point of time, all objects exist for some interval of time, and
most relationships among events and objects evolve over time. Interest in supporting
and incorporating time in database systems led to the research area of temporal data-
bases, which has been a quite active area for about twenty-five years [10]. Temporal
database research has identified (at least) three dimensions of time: valid time, trans-
action time and user-defined time. Valid time concerns the time in the modeled reality.
It is the time when an event occurs or an object is true in the real world. Transaction

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

time concerns the system time instead of the real world time. It is the database time
when an object is stored in the database. These two dimensions are orthogonal. User-
defined time is the time in the world that the user specifies. It is an un-interpreted
attribute domain of time.

In this paper we extend the XPath data model to include valid time. There have
been few papers on this research topic. Grandi and Mandreoli present techniques for
adding explicit valid-time timestamps to XML documents [11]. Amagasa et al. pro-
pose a temporal extension of the XPath data model [12]. In their data model, valid-
time timestamps are added to each edge. In contrast, we extend nodes with valid time.
Dyreson was the first to establish a transaction-time XPath data model with special
transaction-time axes, node tests and constructors [13].

There are two primary contributions of this paper. First, we propose that a valid
time be presented in a valid-time view. The view is a calendar- and query-specific
rendering of the valid time as a virtual XML document. We observe there are many
different calendars each with their own representation of time, and even in a single
calendar, the representation of time needs to be flexible. Second, we extend XPath
with a valid-time axis. The role of the axis is both to provide users with a query lan-
guage mechanism for accessing valid times and to keep wild-card queries from
exploring the valid time. In our model, valid times are isolated in their own dataspace.

As an example, consider the XML document “bi b. xml ” shown in Figure 1. The
document contains data about publishers and the books they publish. The valid times
of the <book> elements are shown in Table 1. The valid times indicate when the
book facts represented in the document are true. A user wants to select only the book
elements that are valid before the year 2000, where 2000 is a year in the Gregorian
calendar. In XPath, the book elements can be located with the following expression.

/ descendant - or - sel f : : book
But how are the valid times reached? In our model the valid-time axis serves to locate
the valid time(s) formatted as a virtual XML document as sketched in Figure 3 (note
that XPath’s abbreviated syntax is used to find the books).

/ / book/ val i d: : t i me
The val i d axis contains a list of every element in the valid-time view. The t i me
node test selects only the <t i me> elements. The times have been located but how can
we view the year? We know that the Gregorian calendar view has a <year > element
that contains the year data as shown in Figure 4, so we can locate that information as
follows.

/ / book/ val i d: : t i me/ descendant - or - sel f : : year
We could also shorten the expression to directly locate the year information.

/ / book/ val i d: : year
Finally, we are interested in determining if the some year comes before 2000. The
predicate can be expressed as follows.

/ / book/ val i d: : year [t ext () > ; 1999]
One important point to observe is that the query

/ / * / t i me
is very different from the following query.

/ / * / val i d: : t i me

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

The former locates all <t i me> child elements in the document whereas the latter
locates only times in the valid-time views. The valid-time axis ensures that all nodes
in the valid-time view are isolated from wild-card queries. Furthermore, (non-
temporal) XPath can be reused to search within the valid-time view for calendar-
specific information.

The remainder of this paper is organized as follows. In the next section a data
model for valid-time XPath is developed. The data model extends the information set
for a node with a list of times. XPath is then extended with the valid-time axis to
query the times and valid-time views to support multiple calendars. The paper con-
cludes with a brief discussion of future work.

2 Data Models

In this section, we briefly outline a data model for valid time. We first present some
time-related concepts that serve as background for this research. We then discuss a
data model for XML (XPath) and finally extend that data model to support valid time
by adding valid time to the nodes in the data model. In the next section we extend
XPath with the ability to query the valid-time information.

Time Background

A simple image of time is a directed line. The time-line could be isomorphic to the
rational numbers, the real numbers, or the integers, resulting in a continuous, dense or
discrete model, respectively [14]. Each point on the line represents a time instant and
the segment between two points represents a time interval. A time constant is a pair of
times, (bi, ei). In a time instant constant, bi = ei, whereas in an interval constant bi ≤ ei.
We assume, without loss of generality, that time is bounded in our model. The starting
and ending instants are called beginning and forever [15].

The XPath Data Model

A well-formed XML document is a collection of nested elements. An element begins
with a start tag and ends with a paired end tag. Between the tags, an element might
contain content that is either a text string or other elements. The XPath data model is
commonly assumed to be an ordered tree. The tree represents the nesting of elements
within the document, with elements corresponding to nodes, and element content
comprising the children for each node. Unlike a tree, the children for a node are or-
dered based on their physical position within the document. The XPath recommenda-
tion [7] does not provide a formal model.

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

Below we give one possible data model that omits details extraneous to the aims of
this paper.

Definition [XPath data model] The XPath data model, D, for a well-formed XML,
X, is a four-tuple D(X) = (r, V, E, I) where,

• V is a set of nodes of the form (i, v) where v is the node identifier and i
is an ordinal number such that for all (i, v), (j, w) ∈ V, v starts before w
in the text of X if and only if ji < .

• E is a set of edges of the form (v, w) where v, w ∈ V. Edge (v, w)
means that v is a parent of w. In terms of X, it represents that w is in the
immediate content of v. There is an implied ordering among the edges;
edge (v, y) is before edge (v, z) if y < z in the node ordering.

• The graph (V, E) forms a tree.
• I is the information set function which maps a node identifier to an in-

formation set. An information set is a collection of properties that are
generated during parsing of the document. For example, an element
node has the following properties: Value (the element’s name), Type
(element), and Attributes (a set of name-value pairs, in XPath, attributes
are unordered).

• r ∈ V is a special node called the root. Note that r is the data model root
rather than the document root. The document node is the first element
node of the document. A document may also contain processing instruc-
tion nodes or comment nodes that precede the document root.

Figure 2 depicts a fragment of the data model for the XML document “bib.xml”
shown in Figure 1. For brevity, not all the information is included in this figure. Each
node is represented as an oval and the corresponding ordinal number is inside it. Each
edge is represented as a straight line and the first three levels of edges are shown be-
side the corresponding lines. Note that the ordinal number of a node is unique in a
document while that of an edge is not. This is because the node ordinal numbers re-
flect the order of all the nodes in the whole document, while the edge ordinal numbers
only differentiate edges that emanate from the same node.

The information in the data model of “bib.xml” is sketched below (part of which is
not displayed in Figure 2).

V = ((0,&0),(1,&1),…,(28,&28))
E = ((&0,&1),(&1,&2),(&1,&12),…,(&27,&28))
I = ((&0, (Value=root, Type =root, Attributes=“”)),

(&1, (Value=db, Type =element, Attributes=“”)),
(&2, (Value=publisher, Type =element, Attributes=“”)),
(&3, (Value=name, Type =element, Attributes=“”)),
(&4, (Value=“ABC”, Type =text, Attributes=“”)),
…
(&4, (Value=“59.99” , Type =text, Attributes=“”)))

r = (0,&0)

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

Valid-time XPath

We have established the data model for XPath. But this data model contains no sup-
port for time. To define the data model we first need a uniform representation
scheme. Usually, a node is valid at a point of time or an interval of time. But more
generally, a node could be valid at several points and (or) intervals of time, e.g., a
temporal element [15]. A combination of valid-time constants should be allowed. We
therefore define the valid time of a node to be a list of time constants.

<db>
 <publ i sher >
 <name>ABC</ name>
 <book>
 <i sbn>1234</ i sbn>
 <t i t l e>book1</ t i t l e>
 <pr i ce>19. 99</ pr i ce>
 </ book>
 </ publ i sher >
 <publ i sher >
 <name>XYZ</ name>
 <book>
 <i sbn>2345</ i sbn>
 <t i t l e>book2</ t i t l e>
 <pr i ce>29. 99</ pr i ce>
 </ book>
 <book>
 <i sbn>5678</ i sbn>
 <t i t l e>book5</ t i t l e>
 <pr i ce>59. 99</ pr i ce>
 </ book>
 </ publ i sher >
</ db>

Figure 1 The document " bib.xml"

Definition [node valid-time representation] The valid time of a node in an XML
document is represented as a list of time constants, [t1, t2,…,tn], where each ti (i =
1,…,n) represents a time constant when the node is valid.

• Each time constant t = (bi, ei) is either a time interval or a time point.
• All and only the time constants when the node is valid are included in this

list.
• Any two time constants do not overlap, no matter if they are time intervals

or time points, i.e., (bi , ei) ∩ (bj, ej) = ∅, ∀i ≠ j, 1 ≤ i, j ≤ n.
• These time constants are ordered by the valid time contained in each of

them, i.e., bi+1 ≤ ei, (i = 1,…,n-1).

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

It is required that the time constants in any valid-time list be disjoint. Otherwise, the
constraint cannot be satisfied that these time constants are ordered. For example, time
intervals (1,3) and (2,4) cannot be ordered; neither can time interval (1,3) and time
point (2,2). Order is important in an XML document.

We are now in a position to define a valid-time XPath data model.

Definition [valid-time XPath data model] The valid-time XPath data model, DVT, for
a well-formed XML document, X, is a four-tuple DVT(X) = (r, V, E, I).

• V is a set of nodes of the form (i, v, t) where v is the node identifier, i is
an ordinal number and t is a valid time such that the following two con-
ditions hold.

1 For all (i, v, t), (j, w, s)∈ V, v starts before w in the text of X if
and only if ji < .

2 For all (i, v, t) ∈ V and its children (i1, v1, t1), (i2, v2, t2),…, (in,
vn, tn) ∈ V, t1 ∪ t2 ∪ … ∪ tn ⊆ t.

• E, I, and r are the same as the non-temporal XPath data model.
Every node in the valid time data model is associated with the valid time that repre-

sents when the node is valid. A node’s valid time constrains the valid time of other
nodes in the model. No node can exist at a valid time when its parent node is not valid.
The following things can be further inferred from the data model definition,

• The valid time of any node is a superset of the union of the valid times
of all its children.

• The valid time of any node is the superset of the union of the valid times
of all its descendants.

• The valid time of the root node is the superset of the union of the valid
times of all the nodes in the document.

 root

db

publisher

name

ABC

publisher

book

isbn title pr ice 10

0

1

3

2 12

5

4 6 8

7 9 11 1234 Book1 19.99

… … … …

Figure 2 The data model for " bib.xml"

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

In the valid-time XPath data model, only nodes have valid time information. The

edge set E is the same as it is in the non-temporal data model. It does not mean that
edges are not associated with valid time information, rather the valid time information
is implied since only nodes can have information in an XML data model. The valid
time of an edge is in fact determined by the valid time of the nodes at the edge’s two
ends. An edge can only exist at the time when both nodes are valid. For an edge (n, v,
w) ∈ E that emanates from the parent node (i, v, ti) to the child node (j, w, tj), its valid
time t = ti ∩ tj. Since tj ⊆ ti (as mentioned above in the data model definition), the valid
time of an edge is always the same as the child node: t = tj.

We again use the XML document “bib.xml” shown in Figure 1 as an example. The
only difference here is the node set V and therefore only some nodes are shown (other
components are identical to those described prevously). Table 1 shows the time infor-
mation for the “book” nodes in “bib.xml” . The node set, V, containing the three
“book” nodes is given below.

V = ((0, &0, t0),…,(5,&3, t5),…,(15,&15, t15),…,(25,&25, t22),…)
t5 = [(“Jan 31,1999” , now)]
t15 = [(“Jan 31,2000” , “Dec 31, 2000”), (“Jan 1, 2001” , now)]
t22 = [(“Jan 31,2002” , now)]
The important thing to note is that the valid time information must satisfy the con-

straint in the data model definition. For example, the valid time of the root node, t0,
should be a superset of the union of the valid times of all the nodes in “bib.xml” .

Book (ISBN) Valid time

1234 [(“Jan 31,1999” , now)]

2345 [(“Jan 31,2000”, “Dec 31, 2000”), (“Jan 1, 2001” , now)]

5678 [(“Jan 31,2002” , now)]

Table 1 Valid-time information for " book" elements in " bib.xml"

3 Querying Valid Time

In this section we present extensions to XPath to query the valid time information. The
semantics is unsequenced. In a sequenced semantics a query would (logically) be
evaluated in every valid-time snapshot simultaneously. Sequenced queries often do
not have explicit valid-time constraints. We extend XPath with an axis to locate the
valid time for a node. The valid time can be viewed as an XML document in any
calendar that the user has defined.

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

Review of XPath

An XPath expression is a sequence of steps. Each step may have four portions, a con-
text, an axis, a node text and some predicates. The context is the starting point of the
evaluation. The axis specifies a certain relationship between the nodes selected by the
axis step and the context node. For example, a chi l d axis selects the nodes that have
a “child” relationship with the context node, i.e., each selected node is a child of the
context node. The node test specifies the node type of the nodes selected by the axis
step. The symbol “ : : ” is used to syntactically separate a node test from an axis. A
predicate, enclosed in square brackets, further filters a node sequence, retaining some
nodes and discarding others. There can be zero or more predicates in one step. The
nodes selected after the axis and the node test are finally evaluated against the
predicates in the order that they appear in the step. A simplified syntax for a step in
XPath is given below.

axi s: : node t est [pr edi cat e1] …[pr edi cat en]
Below is an example of an expression that locates all the <book> elements that are
children of a <publ i sher > element.

/ descendant - or - sel f : : publ i sher / chi l d: : book
The first step starts at the data model root, and locates all publishers by following the
descendant-or-self axis to every node, and then applying a node test to keep only pub-
lishers. The second step finds the children relative to each publisher and keeps only
those children that happen to be books.

Valid-time Axis

The valid time axis of a node contains the valid-time information of the node as if it
had originated from an XML document. The goal is to provide flexible representation
for the valid time of a node in XML, and to provide the means by which users can
customize their view of the valid time. In this section, the concepts of a valid-time
view and default valid-time view are introduced, followed by the definition and syntax
of the valid-time axis. We also address a specific problem of how different calendars
can be used in views desired by different users.

An axis returns a list of nodes relative to the context node. The valid-time axis re-
turns a list of nodes that forms the valid-time information of the context node. The
valid time of a node can be viewed as an XML document.

Definition [node valid-time view] A valid-time list can be viewed as an XML docu-
ment. Let v be a node in the data model tree of an XML document. The valid-time
view, V, is a mapping from the valid time for v to an XML data model, X, denoted
V(v) = X.

Each node has a corresponding view containing its valid time information. A node
valid-time view of a node x is shown in Figure 3. The root node in the view serves as a
handle that the user can use to access the valid time information. Each time in the

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

valid-time list is denoted as a <t i me> element. The content of the <t i me> element
is unique to the view (specific examples are given later in this chapter).

It is assumed that each node in an XML document has a corresponding valid-time
view. These views are created and maintained by the system that stores the XML
document. The user should be able to query the views to extract the desired valid-time
information of the nodes.

<val i dTi me>
 <t i me>
 view of t 1
 </ t i me>
 <t i me>
 view of t 2
 </ t i me>
 …
 <t i me>
 view of t n
 </ t i me>
</ val i dTi me>

Figure 3 A node valid-time view document

Figure 3 does not show what is exactly contained in each view. To be a valid XML
document, each view must contain XML. The user, often the creator of the valid-time
view documents, can define specific views. For example, Figure 4, shows the valid-
time view in the commonly used Gregorian calendar. “Year” , “month” and “day”
element nodes are nested under “begin” and “end” of each view; text nodes represent-
ing the “year” , “month” and “day” information are further nested.

<t i me>
 <begi n>
 <day>31</ day>
 <mont h>1</ mont h>
 <year >2000</ year >
 </ begi n>
 <end>
 <day>31</ day>
 <mont h>12</ mont h>
 <year >2000</ year >
 </ end>
</ t i me>

Figure 4 A valid-time view in Gregor ian calendar

Though the valid-time view can be user-defined, it is useful to have a default valid-
time view provided by the system. The default valid-time view uses the system time,

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

commonly seconds from the origin, to represent the “begin” and “end” time points.
Therefore, a text node is nested under any “begin” or “end” node in the default valid-
time view document. This default view has several advantages. Because the system
time is commonly used in computer systems to represent time, a valid-time view can
be more easily created by the computer system. It is also easy to compare since the
system time is represented as a number. Time information can be easily extracted
because there is no additional sub-tree under the “begin” and “end” nodes.

The default valid-time view for t1 is shown in Figure 5, where b1 and e1 are repre-
sented with the system time. The default valid-time view is used when there is no
user-defined view.

<t i me>
 <begi n>
 b1
 </ begi n>
 <end>
 e1
 </ end>
</ t i me>

Figure 5 The valid-time view is used in a valid-time axis

Definition [valid-time axis] The valid-time axis selects the list of nodes that forms a
document-order traversal of the valid-time view.

Syntax [valid time axis] v/ val i d specifies the valid-time axis of the node v .

From the definition, the nodes in the valid time axis is ordered in document order
traversal of the valid-time view. Since the <t i me> elements in the valid-time view
are ordered by the actual time they represent, these <t i me> elements selected by the
valid time axis are also in this order.

Multi-calendar Suppor t

The valid time is the real world time, which may be represented in various calendars
used by people in different regions. It should not be restricted to any fixed type of
representation. The most commonly used calendar in computer systems is Gregorian
calendar. In this section, the study of Chinese calendar helps us understand the multi-
calendar support in valid time axis.

The Chinese calendar is based on a combination of lunar and solar movements. The
lunar cycle is about 29.5 days hence a lunar year consisting of 12 months is approxi-
mately 12 x 29.5 = 354 days. So a lunar year is about 11 days shorter than a solar year.
In order to “catch up” with the solar calendar a leap month is inserted once every few
years. To be precise, there are seven leap months, called an intercalary month, in each
nineteen-year cycle. This is the same as adding an extra day on a leap year in Gregor-

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

ian calendar. This is why, according to the solar calendar, the Chinese New Year falls
on a different date each year.

Let us consider the example document “bib.xml” (shown in Figure 1). The valid
time in Table 1 is represented in Gregorian calendar. However, there are other calen-
dars that are widely used by people in different regions. For instance, we can also
represent the valid time in Chinese calendar as shown in Table 2. For the convenience
of the readers to convert between the two calendars, Table 3 lists the recent Chinese
new-year days (the first day of a year in Chinese calendar) in Gregorian calendar. A
book element is valid from its publishing date to current time (denoted now). There-
fore, if the specified calendar is Gregorian calendar, then the valid time of the book
element with ISBN “1234” is [(“Jan 31,1999” , “now”)]. Similarly, its valid time in
Chinese calendar is [(“Month 12, Day 19, Year Wu-yin (Cycle 78)” , “now”)]. They
are lists both consisting of one time constant. The corresponding node valid-time
views are shown in Figure 6 and Figure 7.

Publishing date Book
(ISBN) Gregor ian Chinese

1234 Jan 31,1999 Cycle 78, Year Wu-yin, Month 12, Day 15

2345 Jan 31,2000 Cycle 78, Year Ji-mao, Month 12, Day 25

5678 Jan 31,2002 Cycle 78, Year Xin-si, Month 12, Day 19

Table 2 Publishing date in different calendars

Year in Chinese calendar

Chinese name Western name

Chinese new-year day in
Gregor ian calendar

Gui-wei February 1, 2003

Ren-wu February 12, 2002

Xin-si January 24, 2001

Geng-chen February 5, 2000

Ji-mao February 16, 1999

Table 3 Recent Chinese new-year days in Gregor ian calendar

The special symbol “now” should be interpreted into a form that conforms to the

corresponding beginning time. For example, if the beginning node has three child

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

nodes, “year” , “month” and “day” , then the sub-tree starting from the end node should
be like that shown in Figure 7.

<val i dTi me>
 <t i me>
 <begi n>
 <day>31</ day>
 <mont h>Jan</ mont h>
 <year >1999</ year >
 </ begi n>
 <end>
 now
 </ end>
 </ t i me>
</ val i dTi me>

Figure 6 A node valid-time view in Gregor ian calendar

<val i dTi me>
 <t i me>
 <begi n>
 <day>19</ day>
 <mont h>12</ mont h>
 <year >Wu- yi n(Cycl e 78) </ year >
 </ begi n>
 <end>
 now
 </ end>
 </ t i me>
</ val i dTi me>

Figure 7 A node valid-time view in the Chinese calendar

<end>
 <day>now</ day>
 <mont h>now</ mont h>
 <year >now</ year >
</ end>

Figure 8 A possible representation of “ now”

Before a user queries an XML document, he or she should be informed of what

type of calendar is supported. This may be specified in the document itself (as a proc-
essing instruction for example) or in the schema that the document that it must con-

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

form to. The user is then able to specify which calendar to use in the query. A pro-
posed syntax for specifying calendar is given below.

Syntax [calendar in valid time axis] v/ val i d(“ cal endar ”) specifies that the
calendar to use in the valid time axis of v is “ cal endar ” .

It is the responsibility of a system to provide the user with a list of supported calen-
dars. For instance, it may support Gregorian calendar, Chinese calendar and Russian
calendar. The system should verify if a calendar required by the user is available. It
may also use a default calendar (which should probably be Gregorian calendar) since
some users may not be interested in a specific calendar.

Examples

Below are some simple examples of using the valid-time axis to query within the
default view of the valid time.

v/ val i d: : day selects all the day nodes in the axis.
v/ val i d: : t i me[2] selects the second t i me node in the axis. It contains the

second time constant during which the context node was valid. Note that here [2] is
an abbreviated syntax for [posi t i on() =2] .

v/ val i d: : begi n[1] selects the first begi n node in the axis. It contains the
time point when the context node first became valid.

If a user has knowledge of a valid-time view, such as that of the Gregorian calen-
dar, then they can make node tests such as v/ val i d(“ Gr egor i an”) : : year ,
and v/ val i d(“ Gr egor i an”) : : mont h.

Conclusions

This paper presents a simple scheme to add valid-time support to XPath. The support
results in an extended data model and query language. Adding a list of valid times to
each node extends the data model. A valid-time axis is added to the query language to
retrieve nodes in a view of the valid time for a node. The benefit of adding an axis to
reach valid-time information is that the nodes cannot be reached with existing axis
(such as the descendant axis). Hence, the extension is fully backwards compatible
with XPath. The valid-time view is a formatting of the valid time in XML. This al-
lows XPath to be reused to query within a valid-time axis. Multiple calendars are
supported through different valid-time views.

In future, we plan to extend XPath with temporal predicates and aggregates. We
can add temporal predicates to permit some reasoning about the valid-time informa-
tion, e.g., the complete set of predicates found in Allen’s temporal logic [16]. We are
also exploring operations to perform temporal aggregates, e.g., moving-window aver-
ages. Finally, implementation is an immediate goal. We plan to extend Xalan, which
is Apache’s XPath processing engine, with the valid-time axis and view.

Lecture Notes in Computer Science XXXX, Database and Network Information
Systems, Proceedings of DNIS 2002, Aizu, Japan, December 2002, pp. XX-XX.

Copyright Springer-Verlag. All rights reserved.

References

[1] Dave Raggett, Arnaud Le Hors, and Ian Jacobs, HTML 4.01 Specification, W3C
Recommendation, 24 December 1999, <http://www.w3.org/TR/html4/> (30 April 2002).

[2] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler, Extensible Markup
Language (XML) 1.0 (Second Edition), W3C Recommendation, 6 October 2000,
<http://www.w3.org/TR/REC-xml> (30 April 2002).

[3] Don Chamberlin, Jonathan Robie, and Daniela Florescu, Quilt: an XML Query Language
for Heterogeneous Data Sources, Proceedings of WebDB 2000, Available at
<http://www.almaden.ibm.com/cs/people/chamberlin/quilt.html>(30 April 2002).

[4] J. Robie, J. Lapp, and D. Schach, XML Query Language (XQL),
<http://www.w3.org/TandS/QL/QL98/pp/xql.html> (30 April 2002).

[5] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu, A Query
Language for XML, <http://www.research.att.com/~mff/files/final.html> (30 April 2002).

[6] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan Robie, Jérôme
Siméon, and Mugur Stefanescu, XQuery 1.0: An XML Query Language, W3C Working
Draft, 20 December 2001, <http://www.w3.org/TR/xquery> (30 April 2002).

[7] James Clark, and Steve DeRose, XML Path Language (XPath) Version 1.0, W3C
Recommendation, 16 December 1999, <http://www.w3.org/TR/xpath> (30 April 2002).

[8] Michael Kay, XSL Transformations (XSLT) Version 2.0, W3C Working Draft, 20 December
2001, <http://www.w3.org/TR/xslt20> (30 April 2002).

[9] Ashok Malhotra, Jim Melton, Jonathan Robie, and Norman Walsh, XQuery 1.0 and
XPath 2.0 Functions and Operators, W3C Working Draft, 20 December 2001,
<http://www.w3.org/TR/xquery-operators/ > (30 April 2002).

[10] Vassilis J. Tsotras and Anil Kumar. Temporal database bibliography update. ACM
SIGMOD Record, 25(1):41-51, March 1996.

[11] F. Grandi and F. Mandreoli, The Valid Web: it’s Time to Go, Technical Report 46, Time-
Center, Aalborg, Denmark, December 1999.

[12] T. Amagasa, Y. Masatoshi, and S. Uemura, A Data Model for Temporal XML Documents,
Database and Expert Systems Applications, 11th International Conference, DEXA 2000,
pages 334-344, London, UK, September 2000.

[13] Curtis E. Dyreson, Observing Transaction-time Semantics with TTXPath, Proceedings of
the Second International Conference on Web Information Systems Engineering
(WISE2001), December 2001, Kyoto, Japan.

[14] Richard T. Snodgrass, The TSQL2 Temporal Query Language, Kluwer Academic Publish-
ers, 1995.

[15] Christian S. Jensen, Curtis E. Dyreson (editors), et al, The Consensus Glossary of
Temporal Database Concepts—February 1998 Version, February 1998,
<http://www.cs.auc.dk/~csj/Glossary/download/1399ch52.ps> (30 April 2002).

[16] J. F. Allen, Maintaining Knowledge about Temporal Intervals, Communications
of the Association of Computing Machinery, 26, No. 11, November 1983, page 832-
843.

