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ABSTRACT
Activity mining in traffic scenes aims to automatically ex-
plain the complex interactions among moving objects recor-
ded with a surveillance camera. Traditional machine learn-
ing algorithms generate a model and validate it with manu-
ally labeled data, which is a time-consuming and expensive
task. The common issue is that these models often get out-
dated when external variables take place during posterior
recording such as dynamic background, illumination, and
different weather conditions. Those changes practically im-
pose a new domain that often makes the original model in-
accurate for clustering and classification tasks. If we directly
apply a statistical model trained in one domain to other over
the same stream, the performance of the algorithm will no-
tably decrease due to distinct activity representations and
different marginal and conditional distributions.

We approach this problem in two stages: 1) we present
mature results on a hierarchical Bayesian model designed
to represent every video scene as a multinomial distribution
over topics. 2) we present early stage evidence of an al-
gorithm to transfer knowledge across two instances of the
hierarchical model described in the previous stage. A con-
crete example of this first stage consists of a simple (but effi-
cient) algorithm to incrementally generate association rules
to explain current traffic scenes as co-occurrence relation-
ships between topics. This approach is especially useful
when we do not have any labels in a target domain, but have
some labeled information (which frames contain dangerous
scenes? ) in a source domain, by far the most frequent case in
real surveillance systems. This algorithm clusters domain-
dependent activities in the latent space and bridge them
across domains via domain-independent activities. Our ex-
periments show that our method is able to successfully com-
pete with SVM to perform generalization when the temporal
gap between source and target domain is large.
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1. INTRODUCTION
In many real-world applications, data takes the form of

an ordered sequence of continuously arriving items called
a stream. Over time, a huge amount of data can accumu-
late and the distribution of data within a stream can vary.
Traditional modeling over a video stream includes the ex-
plicit representation of discrete elements and the frequency
of their combinations in a single scan because of the contin-
uous arrival of data.

Video can also be modeled as a data stream. Video is
widely used in real-time monitoring applications, e.g., of an
oil spill, a store entrance, or an airport. In traffic video
streams, we are interested in discovering and monitoring the
hidden rules that govern the behavior of multiple objects
occurring in the same scene. Discovering these associations
over different portions of the video streams raises three new
issues, which go beyond traditional techniques.

1. Common behaviors describe activities - The similar
patterns of continuous objects discovered in the stream
(e.g., a car moving from right to left) need to be cat-
egorized under a discrete information unit called an
activity.

2. No a priori knowledge of activities - The number of
activities is not known in advance, rather they depend
on the distribution of moving objects present in each
video. Some method or model is needed to automati-
cally infer activity information from a video.

3. Knowledge is domain specific - External parameters
(dynamic background, illumination, different weather
conditions, etc.) constantly impose new domains over
the stream. Queries to an original model provide in-
consistent results because of different activity and in-
teraction parameters. We would like a method to reuse
the knowledge acquired in other domains of the stream
to response to novel queries successfully.
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These challenging issues motivate our design of a frame-
work for the analysis of traffic video streams. Our visual
surveillance system is designed to automatically answer ques-
tions such as: “Which is the most frequent scene seen so
far?”, “Is that scene dangerous?”, and “Is this similar to
what we learnt before?”. To do this every scene is mod-
eled as a time window that contains a combination of zero
or more activities made by individual moving objects. A
time window circumscribes the interactions between activi-
ties found in a scene as documents containing a collection of
words. We generalize this problem to study mechanisms to
transfer knowledge acquired for a portion of the stream to
other ones. Our goal is to reduce uncertainty for unlabeled
data in a target domain by reusing the knowledge acquired
in a prior machine learning model already trained. Rather
than studying the concept drift for a particular model, we
focus on bridging two unsupervised models through domain-
independent activities to allow transfer of knowledge infor-
mation (e.g., ”dangerous scene”) in the latent space. We
submit this paper to the PIKM workshop in hope of a rich
discussion on knowledge transfer and domain adaptation for
automatic video surveillance.

1.1 Contributions
This paper makes the following contributions.

• We propose an unsupervised framework based on topic
modeling that efficiently addresses the complete pro-
cess of scene understanding over video data streams.
Previous research (see Section 5) proposes algorithms
that assumes a fixed number of activities in a video
or same distribution of activities during learning and
validation steps.

• We show practical evidence that this framework is able
to explain complex activity relationships with simple
co-occurrence rules.

• We propose an algorithm to perform knowledge trans-
fer across different domains over a single video stream.
To the best of our knowledge, ours is the first attempt
to study this problem for activity mining in surveil-
lance video streams.

1.2 Paper organization
The rest of this paper is organized as follows. Section 2

describes a method to discover activities from video data
and explain the need of a hierarchy for this problem. Sec-
tion 3 approaches the problem of transferring knowledge
contained in labels across different sections of a continu-
ous video stream. Section 4 shows ongoing experiments that
demonstrate the usefulness of the proposed approach for real
traffic video datasets. Section 5 discusses related work. Fi-
nally, Section 6 concludes the paper.

2. DISCOVERY OF ACTIVITIES
The problem of discovering activities in a video involves

three kinds of information: events, actions, and activities.
An event is an low-level interest point that represents a pixel
with high variance in its spatio-temporal neighborhood. For
a moving object, events occur in a bounding box forming a
particular spatial arrangement of points that characterizes
the action being performed. While a set of events charac-
terizes an action (e.g., a car moving from right to left or a

person walking in certain direction), activities are clusters
of actions with similar event representation. This terminol-
ogy and hierarchical relationship between events, actions,
and activities have been adopted by the Computer Vision
community, so we too use these common definitions. Given
an input video, we take two consecutive frames and use a
threshold to remove pixels with low intensity, as shown in
Figure 1 (a). Then, we extract their events (gradient points)
using a technique by Laptev et al. [5]. We evaluate con-
nected components in Figure 1 (a) (represented as bound-
ing boxes) to find moving objects in the scene as shown
in Figure 1 (b). Finally, we place grids on those boxes to
discretize the location of existing events into n × n small
regions, as shown in Figure 1 (c). Note that we want that
every connected component often corresponds to a single
moving object, so we obtained better results by only con-
sidering rectangular bounding boxes, enclosing components,
with width-to-length ratio in the interval of (0.7, 1.3). When
we divide the number of events found in every small region
by the total number of events in a motion grid, we estimate
the probability of finding an event in that region. For objects
performing the same activity (G1) in Figure 1 (c), we can
see how the grids also show a similar spatial arrangement of
events.

Our goal at this stage is to model how events are orga-
nized into activities. Thus, in this section we use a hierar-
chical model of two levels to generate activities in video data
as multimodal probability distributions over events.The first
level in the lower part of the hierarchy generates a mixture
of events yi that uniquely define an action with multimodal
distribution θji. The second level generates a list of activ-
ities G0 distributed as the mixture model Gj over several
multimodal distributions θji. These two groups of informa-
tion come from different, but related mixture models. The
hierarchical way of forming activities seems to indicate that
both groups share some mixture parameters. However, note
that we do not know the number of mixture component in
G0 needed to represent the clustering process involved. In
our case, it is difficult to specify a priori the number of event
observations (regions in a grid) and activities needed to cor-
rectly interpret interactions in a traffic video. Our approach
is to set the number of event observations as an external pa-
rameter dependent on the resolution of a particular video,
but infer the number of activities by using a Dirichlet pro-
cess in each group of actions. The use of a Dirichlet Process
is justified by its property of providing a non-parametric es-
timation of the number of mixture components for groups
of observations.

We first define the Dirichlet Process and then present a
hierarchy of two Dirichlet Processes that can discover a num-
ber of activities in video data.

2.0.1 Dirichlet Process
Each event observation can be generated independently

by a mixture component θji. Let θ be a mixture component
(cluster) associated to the event observation yji

Definition 1 (Dirichlet Process). A Dirichlet Pro-
cess (DP) is a stochastic process that generates a distribu-
tion G in the form of an infinite mixture of components
θi = {θ1, θ2, ...}, a base distribution G0, and a positive scal-
ing parameter α.

The construction of the Dirichlet Process can be formu-
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(a) Segmentation (b) Bounding boxes (c) Motion grids and Events

Figure 1: Describing activities of moving objects with events. (a) Motion information is segmented with pairs
of consecutive frames (b) Bounding boxes enclose activity information (c) When zooming-in the frame, we
can see how the spatial arrangement of events describes similar activities within 4× 4 bounding boxes.

lated with sequences of independent random variables (π′i)
∞
i=1

and (θi)
∞
i=1, as originally stated in [8]:

π′i | α,G0 ∼ Beta(1, α)

θi | α,G0 ∼ G0

such that the random distribution G is then defined as:

πi = π′i

i−1∏
l=1

(1− π′l)

G =

∞∑
i=1

πiδθk

where δθi is an atomic distribution centered on θi. For
convenience, we shall abbreviate the construction of π as
π ∼ GEM(α). Note that θi is a multinomial probability
distribution over event observations yi. In other words, the
random variable θi has a probability of being associated to
the set of event y = {y1, y2, ..., yn×n}. Hence, the distri-
bution base G0 also needs to be distributed as a multinomial
distribution. This property of having a family of multivariate
probability distributions is especially found in the Dirichlet
distribution1, so we model G0 as being distributed as that
distribution, G0 ∼ Dirichlet(D0).

The Dirichlet Process generates a list of clusters of events
θ = {θ1, θ2, ...} from the mixture model G that character-
izes an activity based on the event observations yi. Although
this setting can represent appropriately one activity, it can-
not represent several activities, which is needed for activity
recognition in video data. The modeling of activities is de-
fined as a hierarchy of two DPs that relates the generation
and activities jointly.

2.1 The Hierarchical Model
We employ the Hierarchical Dirichlet Process (HDP) in-

troduced by Teh et al. [10] to mutually learn both actions
and activities by considering a second DP which models
groups of actions θji into activities Gj . The result is a hi-
erarchical process which can be understood as the two level
DP represented in Figure 2.
1This is the reason why a Dirichlet distribution is commonly
denominated as a distribution of distributions.

Figure 2: A hierarchical process to find activities in
video data. Each circle is a random variable and
shading represents events observations from a grid.

The lower level of the hierarchy generates an unbounded
number of HMMs (Hidden Markov Models) that learn activ-
ities with an unknown number of states, considering event
probabilities from a motion grid as observable variables. The
upper level combines similar actions (learned in the HMM)
into activities.

Lower Level.
The first level in the hierarchy constructs a variant of the

Hidden Markov Model with state transitions distributed as
Gj . The HMM is a doubly stochastic Markov chain in which
a sequence of state variables x = {x1, x2, . . . , xT } is hid-
den, but the sequence of observations y = {y1, y2, . . . , yT }
is observable. Changes between states are modeled with
state transition probabilities and every state xi is a multi-
modal variable that emits a discrete set of observations with
some probability distribution. Traditionally, HMM assumes
a Gaussian distribution for this property. However, it could
represent even more complex observation behaviors when
the output of the states is represented as the mixture of two
or more Gaussians.

Every HMM is defined by the probability of each state to
transit to other states and the probability of each state to
emit an observation. In our model, both groups of informa-
tion are assumed to be distributed as probability mixture
models Gj for states and θji for observations. A Dirichlet
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Process is used to approximate each mixture model with an
unknown number of mixture components. Since we do not
assume an arbitrary number of states, the transition to an
infinite number of states is modeled using a DP following
the construction procedure presented in Definition 1.

G0 | γ,H ∼ GEM(γ)

Gj | α,G0 ∼ DP (α,G0)

θji | α,G ∼ DP (α0, Gj)

for each j = 1, 2, ..., the probability θji related to the activity
j are learned with a HMM of states x and observations y,
which have the following distributions.

xt | xt−1, (Gji)
∞
j=1 ∼ Gxt−1 for states

yt | xt, (θji)∞j=1 ∼ F (θxt) for observations

here, Gj is the distribution for the squared matrix that rep-
resents the transitions between states for the activity j. Dif-
ferent activities will be learned by HMMs with different dis-
tributions Gj .

Upper Level.
While the lower level generates a list of HMMs that rec-

ognizes individual activities, the upper level in the hierarchy
selects the optimal HMMs associated to the activity j. The
result is a list of activities G = {G1, G2, ...} distributed as a
mixture model G0 with base distribution H, and a positive
scaling parameter γ.

G0 | γ,H ∼ GEM(γ)

In other words, the base distribution G0 generates the dis-
tributions Gj by grouping similar HMMs that learns simi-
lar event distributions θji. Teh et al. [10] also use Gibbs
sampling schemes to do inference under the HDP model.
To detect the activity associated to a bounding box with a
sequence of events observations {y1, y2, ..., yn×n}, first the
trained HMM with highest log-likelihood score is selected.
Second, the activity of the corresponding Gj associated to
the item j is chosen.

3. TRANSFERING LABELS ACROSS DO-
MAINS

The mining of activities considering multiple domains ex-
hibits different characteristics than traditional algorithms
that also model activities as a combination of topics, but
in one single domain. One big advantage of topic models is
that they reduce the feature dimensionality (number of ac-
tivities) into a discrete collection of topics. When considered
together, topics provide a structure for a large collection of
discrete data. Although topics are well-defined for a domain,
they get partially preserved when we project them onto new
domains. In our video problem, this happens because both
source and target domains have different vocabularies (set
of activities) and different marginal and conditional prob-
abilities. These issues violate fundamental assumptions of
topic modeling for mining crowd activities in video data. To
further understand this point, Figure 3 shows two domains
over the same traffic video stream. Figure 3 (a) corresponds

to 2 hours of capturing scenes from a public web camera
at different times (6AM vs. 6PM) on Lenon Street in New
York2. Activities of moving objects are highlighted with
colors. We choose morning and evening recordings in hope
of finding different domains due to changes of illumination
and volume of activities. Figure 3 (b) shows a histogram of
50 bins after projecting every event-based representation of
moving objects (cf. Section 2) with the same hash function
chosen at random with LSH in each domain. We do this to
roughly count individual activities in the videos while pro-
viding comparable representations for this example. Note
that some entries in the vocabulary are frequent in both
domains. Their corresponding activities are highlighted in
green in 3 (a) and corresponds to domain-independent activ-
ities. In other words, two different domains are transferable
over the same stream if they share a set of activities that
close the gap at the latent topic level. Figure 3 (c) shows
how both the source and target domains are composed of
domain-independent (in green) and domain-specific (in blue
and red) activities.

What makes specially challenging the reuse of existing
knowledge from a source domain is the lack of labeled train-
ing samples in the new domain. Topic labeling provides a
conceptual summary in both domains as the activities being
assigned to the same topic are positively correlated in indi-
vidual time windows. Because of the subjectivity involved
in detecting what is dangerous (not necessarily abnormal)
in a collection of scenes, human labeling is used to improve
precision and recall. The generation of a ground truth to de-
tect dangerous situations is very expensive yet. Despite of
crowd sourcing techniques to manually label tons of repet-
itive tasks such as Mechanical Turk [9]. The amount of
time and money devoted to train a classifier in this way is
prohibitively expensive and hinder its application in other
domains. Based on these observations, we propose a method
to transfer knowledge (i.e., scene labels assigned by human
tagging) between two statistical topics models. Our algo-
rithm is a generative topic model that differentiates relevant
topics across different domains. However, not all topics and
activities are relevant for cross domain representation. In
fact, in our experiments less than 35% of all possible activi-
ties across domains is domain-independent. We present this
algorithm in the next subsection.

3.1 Cross-Domain Knowledge Transfer
The algorithm to transfer labels containing knowledge across

domains begins by finding topics in each domain with the
the Hierarchical Dirichlet Process (HDP) explained in Sec-
tion 2.1. Given N topics in the source domain θi and M
topics in the target domain θj , we compute the transference
power across domains by first counting the number of com-

mon activities between both domains (α← θi∩θj
θi∪θj ) and then

computing the Cross-Domain Transfer Coefficient (CDTC)
by weighting with α the likelihood of every activity A of
being generated by its corresponding topic, P (A|θ), regard-
ing to domain-independent (A ∈ θDI) or domain-dependent
(A ∈ θDD) groups of activities:

2Date: 6/15/2012, http://www.earthcam.com/usa/newyork/
timessquare/?cam=lennon hd
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(a) Lenon Street (6AM and 6PM) (b) Vocabulary (c) Source and Target do-
mains

Figure 3: A motivating example for knowledge transfer in traffic video streams.

CDTM ← α

|θiDI |∑
a=1

p(Aa|θi) + (1− α)

2∑
k=1

|θiDP∪θ
j
DP
|∑

a=1

p(Aa|θk)

A value of α > 0.5 will indicate a more reliable knowledge
transfer via domain-independent activities. Finally, for ev-
ery topic in the target domain θj , we assign the label from
the source domain θi with largest CDTM value, as described
in Algorithm 1.

3.2 Why not use this for different streams?
The position of a traffic camera imposes a particular logic

for the activity recognition. This is because different traffic
lights and intersections will lead to obtain a different feature
representation that is not comparable across different videos
streams. That is why the current practice in crowd analysis
is to use one camera to make inference and if we use multiple
cameras, we should transfer information in a camera basis
only. Otherwise, we could deal with the similar problem of
compare topics extracted from different alphabets such as
English and Chinese text documents.

4. EXPERIMENTS
In this section, we test the performance of our techniques

with outdoor videos where moving objects describe traffic
scenes governed by the state of multiple semaphores. The co-
occurring interactions are modeled by frequent sets of activ-
ities with large confidence values over the video stream. We
experiment on the following datasets: Street Intersection3

(normal quality, 25fps, 90 minutes, 5 semaphores), Karl-
Wilhelm & Strabe Streets4 (normal definition, 25fps, 2
hour, 3 semaphores), and Roundabout Junction5 (normal
quality, 25fps, 2 hour, 3 semaphores).

3http://www.eecs.qmul.ac.uk/∼jianli/Junction.html
4http://i21www.ira.uka.de/image sequences/
5http://www.eecs.qmul.ac.uk/∼jianli/Roundabout.html

Algorithm 1 KnowledgeTransfer(Domain1, Domain2)

1: //Output: Topicsource more interesting for target do-
main

2: Topicsource ← LDA(Domain1);
3: Topictarget ← LDA(Domain2);
4: N ← |Topicsource|; //# Topics in source domain
5: M ← |Topictarget|; //# Topics in target domain
6: TM [N ][M ]← 0; //Topic Matrix
7: for i = 0 to N − 1 do
8: for j = 0 to M − 1 do
9: θi ← Topicisource;

10: θj ← Topicjtarget;
11: //find number of common words
12: //find a specific weight for the transfer

13: α← θi∩θj
θi∪θj ;

14: //CDTC: Cross-Domain Transfer Coefficient

15: CDTM [i][j]← 2α
∑|θiDI |
a=1 p(Aa|θi)+

16: (1− α)
∑2
k=1

∑|θiDD∪θ
j
DD
|

a=1 p(Aa|θk);
17: end for
18: end for
19: //find best transfer from the N source topics
20: for j = 0 to M − 1 do
21: //find the highest CDTC value in the source domain

for each target topic
22: [loglikelihood, i]← max(CDTC(:, j));
23: Topicjtarget.label← θisource.label;
24: end for
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Table 1: Information on the training stage for each
dataset.

Dataset Activities Time to
Compute

Street Intersection 37 4.38 hours
Karl-Wilhelm & Strabe 31 3.51 hours
Roundabout Junction 24 2.57 hours

The experiments are run on a 3.6 GHz Pentium 4 with
2 GB RAM and all the above datasets are publicly available
to facilitate later experimental comparisons.

4.1 Experiment 1: Discovering Interactions
In this experiment, we study the significance of the gen-

erated rules to understand the co-occurrence dependencies
between activities. Time windows of size /w/ = 25 frames is
a value that works in all the datasets in order to find activi-
ties temporally correlated in the same window. We consider
the well-known Apriori algorithm to efficiently extract rules
based on the set of topics discovered in each video.

The number of transactions, topics, and the processing
time to discover association rules for every dataset are sum-
marized in Table 3. The Street intersection dataset ex-
hibits more topics than the Karl-Wilhelm & Strabe dataset
since five traffic lights decomposes complex activities into a
large number of well-defined scenes. On the other hand, the
Roundabout Junction dataset contains a few number of
topics due to the limited types of activities performed and
considerable amount of frames with no activities. The pro-
cessing time to generate rules seems to be proportional to
the number of topics discovered in each dataset.

Table 2: Information on the datasets preprocessed to
discover association rules.

Dataset Time
windows

Topics Rule
generation
time

Street Inter-
section

∼ 15000 37 11.52 min.

Karl-Wilhelm
& Strabe

∼ 11000 31 8.12 min.

Roundabout
Junction

∼ 7000 24 6.33 min.

We consider a minimum support value of 4%, a minimum
confidence value of 90%, and activity clusters with more
than 10 elements in order to generate representative rules.
We thus extract rules from the Street Intersection (37
topics and 16 rules), Karl-Wilhelm & Strabe (31 top-
ics and 13 rules), and Roundabout Junction (24 topics
and 10 rules) datasets. In these datasets as more constraints
govern the activities (e.g., traffic lights, one-way roads, inter-
sections, etc.), more topics are generated and more frequent
rules are discovered. This evidence seems to indicate that
every constraint imposes an underlying logic that fragments
complex activities into a large number of small scenes, which
are easy to represent with events and form well-defined ac-
tivities, and therefore are likely to be frequent during the
video. For the Street Intersection dataset, some of the
rules uncovered with the algorithm proposed in this paper

(a) Scenes

(b) Rules

Figure 4: Experiment on the Street Intersection
dataset. (a) A selection of high confidence asso-
ciation rules. (b) Scenes of the Street Intersec-
tion dataset with high confidence values over time.
Changes between scenes represent transitions be-
tween significant scenes.

are depicted in Figure 4 (a) and detailed in Figure 4 (b).
The first three rules are high-confidence associations that
suggest a strong correlation between vehicles moving in par-
allel lanes (G2 and G3) or those moving from side to side
(G7 or G11) while other vehicles move away from the cen-
ter to the top left of the scene (G3). Those activities are
mutually exclusive since there are five traffic lights that pre-
vent vehicles moving from side to side from colliding with
those moving across the parallel lanes. Consider the first
rule {G7} → {G3} as an example. The last two rules indi-
cate the co-occurring dependency between cars turning right
(G5) while others that are moving from right to left (G7).
This behavior, exemplified by rule {G5} → {G3, G7}, is jus-
tified since those vehicles use the same traffic light to move
from the bottom right part of the scene to either the bottom
left or the top left edge, as seen in scene 4 and 5 of Figure 4.

For the Karl-Wilhelm & Strabe dataset, three confi-
dent interactions are shown in Figure 5 (a) and expressed
with rules in Figure 5 (b). We notice the regular presence
of the activity G5 in those scenes. This behavior is rea-
sonable since the activity G5 corresponds to vehicles going
along Strabe avenue, a very busy road in the dataset. The
first rule {G2} → {G5} exemplifies the interaction of vehi-
cles going in parallel lanes without restrictions. The second
rule is similar, but additionally contains the activity of cars
going from the center to the bottom left of the screen (G7).
Furthermore, the usual interaction of cars going straight in
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(a) Scenes

(b) Rules

Figure 5: Experiment on the Karl-Wilhelm & Strabe
dataset. (a) A selection of high confidence associ-
ation rules. (b) Scenes of the Street Intersection
dataset with high confidence values over time.

the avenue (G5) and then turning right after that (G7) is
explained by rule {G5} → {G7}.

For the Roundabout Junction dataset, we show com-
mon interactions in Figure 6 (a) and detailed in Figure 6
(b). The roundabout in the video segments motion of vehi-
cles into multiple activities. The first rules {G11} → {G3}
represents the sequence of car activities going straight (G3)
and then joining the roundabout (G3). By contrast, the sec-
ond rule {G9} → {G2} explains the co-occurrent relation-
ship of vehicles taking lanes separated by the roundabout.
Finally, while some vehicles circulate alongside the round-
about emerging as two activities (G5 and G14), another set
of cars take a different way by turning left from the center
to the upper part of the scene (G8). These sequences of
co-occurring associations reflect the transitions between sig-
nificant scenes in datasets governed by multiple lanes, traffic
lights, and a roundabout.

4.2 Experiment 2: Knowledge Transfer
In this experiment we show our preliminary results on the

transfer algorithm across different domains for each dataset.
We generate a ground truth in every dataset with crowd-
sourcing by asking users to manually tag each each con-
secutive non-overlapping time windows of 10 seconds with
either ”‘dangerous”’ or ”‘non-dangerous”’. We used the first
20 minutes of each dataset for unsupervised learning in order
to take last 20 minutes for testing. Our goal is to test the
transferring between the 2 farthest domains of every video.
Pairs of consecutive frames are processed to identify moving
pixels, events, and connected components. The observations
consist of bounding boxes around moving objects with res-
olutions of 8× 8 for the Karl-Wilhelm & Strabe dataset
and 4 × 4 for the Street Intersection and Roundabout
Junction datasets. This is because the camera in the first
dataset is placed on a far building, so we need grids with

(a) Scenes

(b) Rules

Figure 6: Experiment on the Roundabout Junction
dataset. (a) A selection of high confidence associ-
ation rules. (b) Scenes of the Street Intersection
dataset with high confidence values over time.

Dataset SVM Transfer
Knowledge

Street Intersection 83.41% 73.41%
Karl-Wilhelm & Strabe 68.81% 71.15%
Roundabout Junction 62.17% 75.82%

Table 3: Average precision for scene recognition.

higher resolutions to describe small objects. This process
provides a collection of unlabeled motion grids to the hier-
archical model. We do not assume any prior knowledge in
the number activities to be discovered. DP parameters were
fixed at {α = 11, γ = 0.9}.

Table 3 shows the average precision of the transfer al-
gorithm to correctly detect the label of the frames in the
target domain. To make a competitive comparison, we train
a supervised algorithm SVM [3] with Gaussian kernel and
give it the time windows coming from the first 20 minutes
to then perform inference in the target domain. The fea-
ture vector for SVM is formed by the number of activities
found for each topic in each domain. Note that in this case,
we use for the target domain, the same topics discovered
with HDP in its corresponding source domain to enable the
same vocabulary of activities for both in training and test-
ing. The results are encouraging as TransferKnowledge out-
performs SVM when the gap between domains is large (e.g.,
80+ mins. for the Karl-Wilhelm & Strabe and Roundabout
Junction datasets). This is because SVM constructs hyper-
planes based on features that are less consistent as larger
is the gap between domains. This problem is even exacer-
bated when new interactions occur and HDP do not cor-
rectly group new activities into existing topics. However,
when the gap is shorter (e.g., 50+ min for the Street Inter-
section dataset) SVM outperforms our model as topics are
still stable enough to perform good generalization.
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5. RELATED WORK
In this section we compare our approach with related ef-

forts. For clarity, we keep our comparison focused in each
stage of the video process (i.e., discovery of activities and
knowledge transfer for surveillance videos).

The recognition of activities in video data is an open prob-
lem that has received much attention lately. Commonly,
low-level visual features and actions have been modeled and
classified to provide interpretation of activities. While the
traditional way to categorize existing research is by motion
representation such as local features (e.g., changes in veloc-
ity, changes in curvature of motion trajectories, and gradi-
ents) or global features (e.g., key frames), recent research has
employed hierarchical Bayesian models such as LDA [2] and
HDP [10] to cluster local motions into activities successfully,
c.f., [4, 11, 12]. The above research has led to techniques that
can discover atomic activities, but such techniques omit the
complex interactions between activities commonly present
in video data. Wang et al. [11] approach this problem by
adding one more level to the hierarchy of the LDA and HDP
Bayesian models and providing extended versions of integral
probabilistic hierarchical Bayesian models (LDA, HDP, and
Dual-HDP mixture models) to cluster moving pixels into
atomic activities and interactions. Similarly, Li et at. [6]
infer global behavior patterns through modeling behavior
correlations through a hierarchical probabilistic Latent Se-
mantic Analysis (pLSA). Both techniques, however, learn
global interactions disregarding temporal information. By
contrast, our on-line technique relates frequent activities in
a transaction and removes those that become infrequent over
time. In other words, by decoupling both the discovery of ac-
tivities and interactions, we can incrementally learn interac-
tions without assuming the same probability of co-occurring
relationships over time, a reasonable scenario imposed by
the processing of continuous video streams.

Despite of all the existing research in activity mining in
surveillance videos, little has been done on analyzing collab-
orations across topics generated in two domains. Consider
the case of sudden changes on background, different weather
conditions, and variation on illuminations. In most of these
cases, the distribution of activities in future frames is differ-
ent. It is often hard for researchers to establish such cross
videos interactions to recognize dangerous activities from
normal ones. Cross-domain learning often exhibit very dif-
ferent challenges compared to traditional activity models in
the same domain. For instance, Jain et al. [1] consider a
variation of LDA, People LDA, to connect words to face im-
ages. Here the words act like labels which are easy to count
and evaluate co-occurrences values. In our case we focus
on transferring learning from domains that are both coming
from videos. More recently, Li at al. [7]. proposed a simi-
lar system than PeopleLDA, but considering the transfer of
knowledge between textual features and large video data.

6. CONCLUSION
In this paper, we propose a framework to find approxi-

mate co-occurring associations from video stream data con-
sidering unsupervised clustering of events (low-level visual
features) into activities. We define activities as actions de-
scribed by similar event distributions. A hierarchy of two
stochastic processes is used to avoid considering an arbi-
trary number of activities in the video. The most visible

aspects of this effort is the incremental generation of rules
that discover the interaction of frequent activities for current
scenes and the ability to make generalization over different
domains of the same video stream. Our experimental re-
sults show that our approach efficiently and automatically
discovers and transfer sets of activities in a video stream
while evaluating their frequent occurrence and co-occurring
relationships.
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