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Abstract—Techniques to extract or understand in-
teractions between moving objects in video is becom-
ing increasingly important as the amount of video
increases. Applications in surveillance range from un-
derstanding traffic to studying fish schooling behavior.
Because of the massive amount of data, fast, approx-
imate techniques based on statistical models are com-
mon. These models connect user annotations (labels) to
scenes in a (short) video segment. The connection forms
a domain, which associates information about moving
objects in scenes with the labels, such as to indicate
whether a user considers a particular traffic scene to be
“dangerous.” Unfortunately a statistical model trained
in one domain often yields low precision and recall
when applied to another domain because the random
variables that explain video content exhibit changing
marginal and conditional probability distributions over
time (e.g., due to different backgrounds, changes in
illumination, shading, and numbers of moving objects).
This problem is exacerbated when new domains contin-
uously arise (e.g., in the real-time processing of video)
and user annotations are only limited to training data,
a common scenario for surveillance video.

In this paper, we propose a new, cross-domain tech-
nique that reuses labeled content from source domains
to improve the prediction of user annotations in a target
domain. Our model probabilistically learns how users
annotate scenes based on the similarity of target to
source domains. Two domains that are similar will share
a large number of observable features. We encode the
similarity in a covariance matrix, which flexibly allows
allows users to set an arbitrary covariance structure
between pairs of domains before training the model.

Experiments show that our method improves state-
of-the-art techniques (SVM and CF) in predicting dan-
gerous scenes in real-world traffic surveillance videos.

I. Introduction

Surveillance cameras are widely-used to monitor and
alert responders to potentially interesting events, e.g., an
oil spill in a pipeline, or an accident in a busy intersec-
tion. Since near real-time response to interesting events
is desirable in these applications, the video produced by
the cameras must be processed in real-time. Let’s assume
that the potential responders annotate a small portion
of a video with labels about events of interest, e.g., a
car runs a red light. Ideally, a video processing system
could then predict from this small training set of labels

(a) Bounding boxes

(b) Trajectories

Fig. 1. Describing surveillance video for traffic roads.
(a) After moving objects have been segmented, bounding
boxes enclose activity information (b) Bounding boxes
are tracked during a time window to extract trajectories,
highlighted in white.

when interesting events occur later in the video. In other
words, the system should reuse the annotations to improve
prediction in future scenes. The problem of predicting
future labels in video has three aspects that go beyond
traditional machine learning algorithms.

1) Mixed membership — The mixture components
that form a video scene are not known in advance;
rather they should be learned based on the fre-
quent co-occurrence of discrete activities in the
video. A generative process, like Latent Dirichlet
Allocation (LDA) [1], is needed to generate a
proportion of topics for every scene.

2) Dynamic content — Video is noisy, with lots of
moving objects that cannot be isolated cleanly.
Hence, activities in a video cannot be extracted
consistently. As LDA generates topics based on



activity co-occurrence, it yields different types of
topics at various places in the video. This de-
creases the utility of applying a statistical model
trained in one part of the video to another.

3) User annotations are scarce and expensive — We
can ask users to provide labels for some scenes
via crowd-sourcing, but realistically, the user an-
notations will be limited to a small portion of
the video. Repeating this process when every new
external variable happens is not scalable in a
continuously growing video database. Somehow
the model has to learn how to reuse the limited
set of labels to best fit the remaining video.

To address these aspects, we propose a new model that
we call the Crossdomain Probabilistic Model (CPM). The
basic idea behind CPM is to generate topics that jointly
model activities of two domains. Those topics become the
common latent variables to propagate labels from a source
to a target domain. The similarity of two domains, in terms
of the number of common activities, guides the inference
of latent variables.

This paper is organized as follows. Section II gives
definitions and common terminology. Related work is dis-
cussed in Section III. Section IV studies methods to con-
nect content in different domains. Section V introduces our
algorithm. Section VI shows experiments that demonstrate
the usefulness of the proposed approach for real traffic
video. Finally, Section VII concludes the paper.

II. Background

The problem of understanding video involves three
kinds of information: features, activities, and scenes.1 A
feature is a trajectory that exhibits the temporal behavior
of a moving object, for example, consider the trajectories
of vehicles going up, down, and turning right in Figure 1
(c). An activity groups trajectories with similar shape. One
way to compute activities is to hash each trajectory, those
that end up in the same bucket form an activity. CPM
uses the Timeseries Sensitive Hashing (TSH) algorithm
proposed in [4]. TSH can map similar trajectories to the
same bucket, even when those trajectories vary in length,
with high probability. Figure 2 illustrates the process of
finding activities. In the figure, trajectories are hashed into
four buckets. The hashing yields a dictionary of discrete
activities (e.g., A, B, C, and D). A scene is a time window
containing some number of activities.

To this standard set of terms we add annotation and
domain. An annotation is a user description of a scene, e.g.,
a user could label a scene as “safe” or rate the amount of
violence in a scene as “high.” A domain is a collection of
user annotations.

Below we formally define each of the terms described
informally in the previous paragraphs.

• An activity, ai, is the basic unit of discrete data.
It is an entry in a fixed dictionary of V terms.

1This terminology is used in the Computer Vision community.

• A topic, βk, is a distribution over a subset of
activities.

• A scene, m, is a time window containing a
collection of N activities denoted by A =
{a1, a2, ..., aN}. We can characterize a scene, m,
as a proportion, θm, over K existing topics.

• An annotation is a numeric value r = {0, 1} pro-
vided by a user to represent his/her perception of a
scene (e.g., is this scene dangerous? ). Without loss
of generality, we discuss only a simple, two-valued
space, which could be extended to the interval [0-
1].

• A domain, D, is a matrix of users, I, as rows and
scenes, M , as columns. Users annotate the scenes
of a domain with the value rim,

rim =

{
1, if scene m is annotated
0, otherwise

.

As explained before different domains will generate the
content of video scenes in different ways in response to
external variables. This makes it difficult to predict the
labels of scenes in new domains.

III. Related Work

A. Latent Dirichlet Allocation (LDA)

We use LDA to generate topics in video. A topic
is a distribution over activities that co-occur frequently
in scenes. Every scene is thus formed by a multinomial
proportion over K topics.

Let’s fix the following parameters of the model: K
topics, β (each βk is a vector of probabilities over the V
entries of the dictionary of activities), and the Dirichlet
parameter α (a vector of K components with αi > 0).
LDA models every scene, m, with the following generative
process:

1) Choose a topic proportion θm from the distribu-
tion Dirichlet(α)

2) For each of the N activities,

a) Choose topic id zmn from the multinomial
distribution Mult(θm)

b) Choose an activity amn from the multino-
mial distribution Mult(βzmn

)

The above process explains how LDA allows a scene to
exhibit a mixed membership over the K possible topics.
For example, LDA can capture that the scene shown in Fig-
ure 1 (c) contains topics β1 and β2, where β2 corresponds
to a collection of two frequently co-occurring activities
(vehicles going down and vehicles turning right) in the
second lane. A latent variable for this scene represents the
proportions over K = 5 possible topics showing that topics
β1 and β2 are active, θ = {0.6, 0.4, 0.0, 0.0, 0.0}. Note that
similar scenes will exhibit similar topic proportions, θ.
Hence, θm provides a low-dimensional representation for
the content of a video scene, m.



(a) Similar trajectories mapped back to video scenes

(b) Content of some buckets in the hash table

Fig. 2. Discovery of activities in video. (a) Similar trajectories show a similar shape in video scenes. (b) They are mapped
to buckets A, B, C, and D of TSH.

Fig. 3. Graphical model representation of LDA. Activities
are shadowed to represent an observable variable.

LDA is formed of conditional relationships between
activities, topics, and parameters. Figure 3 shows these
dependencies as a probabilistic graphical model. It includes
hidden variables (per-activity topic assignments, zmn, per-
scene topic proportions, θm, and per-dataset topic distribu-
tion, βk), observable variables, activities, a, and a dataset-
level parameter (Dirichlet parameter α). The hidden vari-
ables reflect a space of latent variables in the video, so
its posterior inference is needed to estimate which topics
best fit to the generation of activities in each scene. The
posterior distribution over all the random variables in the
model can be decomposed into a product of conditional
distributions2, as follows.

2Both Equation (1) and Figure 3 are equivalent as they represent
conditional dependence between random variables

p(θ, z|a, α, β) ∝
N∏
n=1

p(θ|α)

N∏
n=1

p(zn|θ)p(an|zn, β) (1)

We can use variational Expectation Maximization
(EM) as a deterministic alternative to Markov Chain
Monte Carlo (MCMC) to approximate the computation
of the posterior distribution p(θ1:M , z1:M |a1:N , α1:K , β1:K)
as in [1]. This will optimize independently the variational
parameters that govern the latent variables of Equation (1)
by minimizing the Kulllback-Leibler (KL) divergence be-
tween the variational distribution and the true posterior
p(θ, z|w,α, β).

B. Activity Mining

The recognition of activities in video is an open problem
that has recently received much attention. Commonly, low-
level visual features and actions have been modeled and
classified to provide interpretation of activities. While the
traditional way to categorize existing research is by motion
representation such as local features (e.g., changes in veloc-
ity, motion trajectories, and gradients) or global features
(e.g., key frames), recent research has employed hierar-
chical Bayesian models such as LDA [1] and Hierarchical
Dirichlet Process (HDP) [5] to cluster those activities into
scenes [6], [7], [8]. The above research has led to tech-
niques that can discover atomic scenes, but such techniques
omit the complex interactions between scenes commonly
present in video. Wang et al. [7] approach this problem by
adding one more level to the hierarchy of the LDA and
HDP Bayesian models and providing extended versions of
integral probabilistic hierarchical Bayesian models (LDA,
HDP, and Dual-HDP mixture models) to cluster moving
pixels into atomic activities and interactions. Similarly, Li
et at. [9] infer global behavior patterns through modeling
behavior correlations using a hierarchical probabilistic La-
tent Semantic Analysis (pLSA). Both techniques, however,



temporal variations in the distribution of activities when
they learn global interactions. In contrast, our technique
models video scenes with topics that do not assume the
same probability of co-occurring activities over time, a rea-
sonable scenario imposed by the processing of continuous
video streams.

IV. Domain Adaptation

The mining of activities across multiple domains is
a problem that exhibits new characteristics. Existing al-
gorithms model scenes as a combination of topics in a
single domain [7], [6]. Though topics from one domain
are partially preserved when projected to other domains,
the source and target domains could have different vo-
cabularies of activities (marginal distributions) and the
dependency between latent variables (conditional distri-
butions) may vary. These issues change the fundamental
assumptions of topic modeling for mining activities in
video.

Observe that the content a domain is transferable to
a new domain if both domains share a set of common
variables (which can be observable or latent). Our goal is to
discover domain-independent variables that connect simi-
lar content in two domains. We compare the transference
at three levels: feature-level, topic-level, and cross-domain
level to determine which the best level.

A. At a feature-level

A simple approach is to find a set of observations
(activities) present in the dictionary of both domains,
as seen in Figure 4 (a) and then perform a K-means
clustering over these common features to generate K
mixture components. Then, in each scene we obtain a low-
dimensional representation on the content by computing a
histogram of activities indexed by each of the K clusters
and normalizing.

B. At a topic-level

We compute topics with LDA in each domain indepen-
dently and define a similarity measure between topics in
terms of the number of activities that they share across
domains. Every topic is connected to its most similar
topic in the other domain, as seen in Figure 4(b). When
we separate connected topics, we end up with a new
set of mixture components that connects content in both
domains. As before, we compute the content for each
scene by counting the number of activities indexed by each
mixture component.

C. At a crossdomain-level

The previous two approaches are sub-optimal solutions
to find latent variables that are relevant for domain adap-
tation. This is because either video activity is noisy and
unstable (feature-level approach) or domain-specific topics
model co-occurrence of activities in each domain, but fail
to represent mutual co-occurrence across domains (topic-
level approach).

We improve the above two methods by collapsing activ-
ities of both domains in a combined dataset and extracting
topics to have a common latent variable to explain both
domains. By considering two video segments as a single
domain, we can learn topics that model activities in two
domains jointly. That is, a collection of topics becomes a
common latent variable that shares co-occurrence informa-
tion across two domains, as shown in Figure 4(c). We take
special care to consider the same number of activities in
each domain to avoid bias in the generation of topics for a
particular domain. Our experiments show that this method
provides better recall values than feature- and topic-level
techniques.

Fig. 5. Multiple source and target domains, missing anno-
tations are shown with Xs.

V. Crossdomain Probabilistic Model

Consider three source domains and a current target
domain as depicted in Figure 5. A scene, m, in the source
domains is annotated as dangerous (rim = 1) or non-
dangerous (rim = 0) by a user, i. Scenes in the target
domain are not annotated (rim =X). We need a model that
predicts those missing annotations based on the similarity
of the content in the source and target domains and the
similarity of the user annotations.

A source domain can be factorized into latent vectors
ui ∈ RK (for users) and vm ∈ RK (for scenes), respectively.
The annotation of user i to scene m in the original matrix
can be approximated as an inner product between their
corresponding latent vectors,

rim ∼ uTi vm (2)

which are learned by minimizing the least squared error
with respect to the original user annotations rim,

minU,V
∑
i,m

(rim − uTi vm)2 + λu ‖ui‖2 + λv ‖vm‖2 (3)

with regularization parameters λu and λv.

Note that the inner product uTi vm corresponds to a
prediction of whether user i considers the interaction of
activities contained in scene m as dangerous. However,
such a prediction cannot be computed with high precision
in a target domain because scenes in the target domain
do not contain user annotations and therefore rim is not



(a) Feature-level (b) Topic-level (c) Cross-domain level

Fig. 4. Three different strategies for Domain Adaptation. The random variables a1:M and β1:K represent activities and
latent variables, respectively.

available for Equation 3, as visually described in the target
domain of Figure 5.

We introduce the Crossdomain Probabilistic Model
(CPM) to alleviate that problem. CPM learns user anno-
tations on latent variables that connect the generation of
content across a pair of source and target domains (see
Section IV-C and Figure 4(c)). CPM uses those cross-
domain topic proportions, θm, in place of the latent vector
vm of Equation (3) to factorize the user annotations in
both domains, as follows.

ri,m ∼ N (uTi θm, c
−1
ij ) (4)

c−1
im being a precision parameter.

However, such predictions should include an uncertain
quantity εm that offsets the topic proportion in response
to the dissimilarity of their corresponding domains. This
information is encoded using a normal distribution with
expected value equal to the number of activities in the
target domain and variance equal to the number of differ-
ent entries in the dictionary of activities of both domains.3

The idea is to penalize source domains that are different in
terms of feature representations. Thus, a latent vector vm
explains a scene m as vm = θm+εm, where εm ∼ N (µ, Σ),
is equivalent to

vm ∼ N (θm + µ, Σ)

which models when the document latent vector vm is close
to its topic-proportions θm. This makes a user annotation
equivalent to,

E[ri,m|ui, θm, εm] ∼ N (uTi (θm + µ),Σ))

∼ N (uTi vm, Σ) (5)

3A prior for ε is considered a purely subjective assessment in
the way how a target domain is related to a source domains. More
expressive metrics to relate content across domains could be used
such as the part of the day (morning, afternoon, or evening) when
the recording took place.

This cross-domain factorization can also be generated
as a probabilistic graphical model with the following gen-
erative process,

1) For each of the I users,

a) Choose a latent vector ui from
N (0, λ−1

u IK)

2) For each of the C collapsed datasets (c.f. Section
4.3) that combines a target domain with a source
domain,

a) For each of the M documents,

i) Choose a topic proportion θm from
the distribution Dirichlet(α)

ii) Choose the document offset εm from
N (µc, Σc)

iii) Set document latent vector as vm =
εm + θm

iv) For each of the N activities,

A) Choose topic id zmn from
Mult(θm)

B) Choose an activity amn from
Mult(βzmn)

v) For each existing user-scene annota-
tion (i, m),

A) Choose an annotation ri,m
from ∼ N (uTi vm, c

−1
im)

Similar approaches that also model user annotations as
a probabilistic matrix factorization over users and items
do not consider the presence of multiple domains and
therefore lose the advantage of transferring existing labels
to a target domain to improve prediction [10], [11].

A. Learning Parameters

Let’s assume the topics β1:K are fixed, the posterior dis-
tribution of CPM p(u, v, θ, z|Σ, λu, α, β) can be factorized
as follows,∏I

i=1 p(ui|λu)
∏M
m=1 p(ri,m|ui, vm)p(vm|Σ, µ, θm)p(θm|α)∏N

n=1 p(zn|θm)
∏N
n=1 p(am,n|zm,n, βk)

This expression is computationally intractable as the
cardinality V xMxN is too large. Our goal is to maximize



Fig. 6. Probabilistic Graphical Model of CPM. Activi-
ties, amn, and annotations, rim, are observable variables
shadowed in gray. Note that domain-independent topic
proportions, θm, are defined for each collapsed dataset.

the posterior distribution by optimizing the functional
dependence of the Gaussian on each hidden parameter. For
example, the posterior of p(vm|µ,Σ, θm) has the quadratic
form,

(vm − (θm + µm))TΣm(vm − (θm + µm))

because each topic proportion is biased in response to a
dissimilarity metric encoded in the covariance matrix Σ,
vm ∼ N (θm +µ, Σ). Similarly, the quadratic form of the
user annotation p(ri,m|ui, vm) is defined as,

(ri,m − (uTi vm))T ci,m(ri,m − (uTi vm))

The log likelihood of the posterior represents this value
as the sum of probabilistic components,

L = −λu

2

∑
i u

T
i ui

− 1
2

∑
m (vm − (θm + µm))TΣ(vm − (θm + µm))

−
∑
i,m (ri,m − 1

2 (uTi vm))T ci,m(ri,m − (uTi vm))
+
∑
m

∑
n log(θjkβk,wjn

)

First, we optimize L in terms of U and V and set
them to zero to find their optimal parameters, similar to
[12]. Then, we derive L in terms of θ to learn the topic
proportions for each document and apply Jensen’s inequal-
ity to provide a lower bound in terms of a function q(θ)
that can be factorized with K independent components as
q(θ) =

∏K
i q(θi). This result in the following factorization,

q(θ) = q1(θmk)q2(βk,wmn
), which can be optimized by

coordinate ascend to find their optimum parameters by
fixing one of them at each iteration.

VI. Experiments

In this section, we test the performance of CPM with
surveillance videos recording activities in traffic roads.
Moving objects describe traffic scenes governed by the

TABLE I. Information of the Training of Each Dataset.

Dataset # Activities Time to Com-
pute

Street Intersection (5
semaphores)

318 4.21 hours

Karl-Wilhelm & Strabe (3
semaphores)

227 4.37 hours

Roundabout Junction (3
semaphores)

235 4.43 hours

state of multiple semaphores. We experiment on the follow-
ing datasets: Street Intersection4 (normal quality, 25fps,
90 minutes, 5 semaphores), Karl-Wilhelm & Strabe
Streets5 (normal definition, 25fps, 2 hour, 3 semaphores),
and Roundabout Junction6 (normal quality, 25fps, 2
hour, 3 semaphores).

We generate a ground truth in every dataset by asking
users to manually tag scenes (time windows) of 10 seconds
with either “dangerous” or “safe”. We generate domains
in each dataset by considering three consecutive source
domains and a target domain in the beginning and the
end of each video, respectively. Every domain spans over
20 minutes. This generates 360 scenes for the source
domain and 120 scenes for the target domain. To compute
precision, we assume that no labels are available in the
target domain and consider a hit if the average value of the
precision with respect to the number of users is larger than
0.5 and a miss otherwise. For the generation of dictionaries
of activities in each video, we use the same hash function
in Timeseries Sensitive Hashing (TSH). The number of
activities found in each video depends on the complexity of
the scene, as shown in Table I. The more traffic lights yields
more segmented activities and a larger dictionary. The
experiments are run on a 3.6 GHz Pentium 4 with 4 GB
RAM and all the above datasets are publicly available to
facilitate later experimental comparisons.

A. Experiment 1: Finding Parameters

Before studying the performance of the algorithm, we
analyze in this experiment the optimal values of external
variables K (number of topics) and Σ (covariance between
a source and target domain) for each dataset considering
all the datasets.

First, we want to study the effect of changing the
numbers of topics K in the model. We fix the other input
parameters {α = 0.1, λu = 0.5, Σ = 0.3, 0.3, 0.3} and then
compute the Mean Average Precision (MAP@20) for the
scenes in the target domain with a increasing number of
topics starting at 10. Figure 7 shows that a value of K = 50
topics provides a consistent result for all the datasets. Note
that, the Street Intersection dataset shows the highest
precision as it also contains the largest total number of
activities. This is because scenes are better defined by
topics that models co-occurrence with enough number of
discrete activities.

4http://www.eecs.qmul.ac.uk/∼jianli/Junction.html
5http://i21www.ira.uka.de/image sequences/
6http://www.eecs.qmul.ac.uk/∼jianli/Roundabout.html



Fig. 7. Finding the optimal number of topics for each
videoset in CPM.

Second, we observe the effect of the covariance ma-
trix to relate different combinations of source and target
domain in a video. We choose the Roundabout Junction
dataset for this experiment because it is the largest, so
it is more likely to find multiple domains over the video.
We fix this time the number of topics to K = 50, in
response to the above experiment, and the other input
parameters as {α = 0.1, λu = 0.5}. Then we compute
the Mean Average Precision (MAP@20) for the scenes
in the target domain, but considering each of the three
source domains independently. Only one component of the
covariance matrix is activated at a time to distinguish its
entire effect (e.g., when considering the first source domain,
only Σd=1 is activated). Figure 8 shows that the third
source domain gets the highest precision with a value of
Σd=3 = 0.8. The choice of the last domain makes sense
as it is the closest in time and thus the most likely to
contain similar distributions of latent variables. Note that
this effect may vary in much larger videos.

B. Experiment 2: Average Prediction in Target Domain

To make a competitive comparison, we evaluate the
performance of CPM with the optimal K∗ and Σ∗ parame-
ters computed in Experiment 1 and {α = 0.1, λu = 0.5}, in
terms of the Mean Average Precision (P@20) for predicting
the true label in the target domain. This experiment
examines the following methods:

a) SVM (trained with common feature-level variables,
as explained in Section IV-A)

b) SVM (trained with common topic-level variables, as
explained in Section IV-B)

c) SVM (trained with common crossdomain variables,
as explained in Section IV-C)

d) Collaborative Filtering (collapsing both source and
target domains in a single matrix)

e) CPM (with common topic-level variables) and

f) CPM Recommendation (our approach)

Fig. 8. Finding the optimal values in the covariance matrix
that relates content with respect to each source domain.

As summarized in Figure 9, CPM shows better pre-
diction of dangerous scenes in the target domain. The
closest competitor is Collaborative Filtering, which does
not consider any video content, but only user preferences
on scenes. This shows the advantage of considering both
content and user annotations for predicting activities.

On the other hand, SVM cannot make adequate gen-
eralization as the underlying distributions of random vari-
ables change for different domains (feature and topic-level
variables). Moreover, when we train SVM with topics that
model co-occurrences in two domains jointly, we observe
the best performance of SVM for this problem. This con-
firms the initial hypothesis stated in the paper, the variable
distribution of random variables that explains content in
video negatively affects the generalization properties of
supervised algorithms. This is more evident when the
temporal gap between source and target domains is large
as in the Karl-Wilhelm & Strabe Streets and Roundabout
Junction datasets. However, when the temporal distance
between both is small, the performance of SVM with
crossdomain variables is similar to Collaborative Filtering
and CPM with topic-level variables.

Finally, we experiment with a variation of CPM with
topic-level variables, which transfer user annotations, but
considers only topics that model activities in the source
domain. The results in terms of MAP@20 are not as good
as the CPM technique discussed in this paper and CF.

VII. Conclusion

The rise in the number of surveillance cameras has led
to an increasing need to process surveillance video and
understand the interactions of moving objects in real time.
Because of the massive amount of data, fast, approximate



Fig. 9. Comparison of prediction techniques in terms of Mean Average Precision@20. a) SVM (trained with feature-level
variables) (b) SVM (trained with topic-level variables) (c) SVM (trained with crossdomain variables) (d) Collaborative
Filtering (e) CPM (with topic-level variables) and (f) CPM Recommendation

techniques based on statistical models are common. In this
paper, we propose a new, cross-domain model that has
uses labeled content from one segment of a video (source
domains) to improve the prediction of user annotations
in other segments (target domains). In our model, users
annotate the source domains to describe events of interest
in the domain. As the surveillance continues, new video
with unknown content arrives to be processed. The model
predicts the annotations in the newly arrived video based
on the similarity of scenes between the source and target
domains. Probabilistically, two scenes are similar if they
share a set of random (observable or latent) variables.
Experiments show that our method improves state-of-the-
art techniques in predicting dangerous scenes in real-world
traffic surveillance videos.
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