
Supporting Data Aspects in Pig Latin

Curtis E. Dyreson, Omar U. Florez, Akshay Thakre, and Vishal Sharma
Department of Computer Science

Utah State University
Logan, Utah, USA

curtis.dyreson@usu.edu,{omar.florez,akshay.thakre,vishal.sharma}@aggiemail.usu.edu

ABSTRACT
In this paper we apply the aspect-oriented programming (AOP)
paradigm to Pig Latin, a dataflow language for cloud computing,
used primarily for the analysis of massive data sets. Missing from
Pig Latin is support for cross-cutting data concerns. Data, like
code, has cross-cutting concerns such as versioning, privacy, and
reliability. AOP techniques can be used to weave metadata around
Pig data. The metadata imbues the data with additional semantics
that must be observed in the evaluation of Pig Latin programs. In
this paper we show how to modify Pig Latin to process data woven
together with metadata. The data weaver is a layer that maps a Pig
Latin program to an augmented Pig Latin program using Pig Latin
templates or patterns. We also show how to model additional levels
of advice, i.e., meta-metadata.

Categories and Subject Descriptors
H.2.3 [Database Management]: Metadata, cloud computing

General Terms
Management, Languages

Keywords
Aspect-oriented, Pig, cross-cutting concerns

1. INTRODUCTION
No matter whether data is stored in a database, flat file, spread-

sheet, or as persistent objects, data has cross-cutting concerns. A
cross-cutting data concern is a data need that is universal (poten-
tially applicable to an entire database) and widespread (can be used
to enhance many different databases). Many data collections have
cross-cutting data concerns, and as a collection evolves, new con-
cerns may arise. For instance, a new privacy policy is implemented
to hide certain information in a Facebook page. A privacy cross-
cutting concern could be added to the relevant Facebook data to
hide it from the general public.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’13, March 24–29, 2013, Fukuoka, Japan.
Copyright 2013 ACM 978-1-4503-1766-5/13/03 ...$15.00.

There are many data needs that are universal and widespread.
Heretofore, these needs have not been seen as cross-cutting con-
cerns. Data security and privacy policies govern every interaction
with a datum, and have been researched for many years [5, 11, 16].
Security and privacy are of special concern in cloud computing
since data is stored and processed in the cloud on potentially un-
trustworthy computers [7, 31, 39]. Data quality is another potential
cross-cutting concern [2]. Data warehouses aggregate data from a
variety of data sources of varying quality and queries that mix low
and high quality data should provide a measure of quality along
with a result. Data provenance [9, 10] and lineage [3, 8] track the
data and/or processes that produce a query result, which aids in
debugging and understanding complex queries. Time is another po-
tential cross-cutting concern, both the time of the transaction that
creates a datum and the time that it is valid in the real-world need
to be tracked for many applications [30]. Each of these potential
cross-cutting concerns has an individual, distinct semantics.

Currently, there does not exist a general framework to support
cross-cutting data concerns (though systems often support individ-
ual concerns, e.g., security). Data management systems are large
and complex, and are not designed to be easily configured or mod-
ified to support cross-cutting data concerns. Developers currently
have to rely on ad-hoc techniques to add concerns to a data collec-
tion, or use a database management system that already supports a
particular concern. To support cross-cutting data concerns a new
paradigm is needed, one that looks to fields outside of databases
for useful techniques and insights. Aspect-oriented programming
(AOP) provides a framework that can be adapted to our needs. AOP
was developed to extend existing programs with new functionality
without having to reprogram.

1.1 Harnessing Aspects for Data Cross-cutting
Previously we used aspect-oriented techniques to create aspect-

oriented data (AOD) for data stored in the relational model [12,14].
AOD “tags” data with metadata from a cross-cutting data concern
to create a data aspect. The aspect becomes active whenever the
data is used. A data aspect weaver weaves behavior for the cross-
cutting concern into the evaluation of a query, constraint, or object
management operation. We showed how to weave behavior into the
relational algebra [12]. There has also been other research in using
AOP in databases. Research has addressed using aspect-oriented
techniques to program databases [32], using a relational database
to support AOP [33], and applying AOP to XML schema [15].

Figure 1 gives a broad classification of the space of cross-cutting
data concerns using an AOP approach. In general, a data aspect has
access to two things: data and advice, which is the metadata that
annotates the data. A data aspect becomes active when the data is
used in an operation in the sense that the aspect can change (in-
sert, update, or modify) the data or make no change. The aspect

13

authored by

language

vacuuming

profiling

no-change

(noop)

lineage

provenance

probabilistic

temporal

privacy

security

quality

change

no-change

(noop)

change

Data

A
d

v
ic

e

Figure 1: The space of cross-cutting concerns

could also change the advice. In general, “change” or “no change”
are the only possible effects (ignoring side effects like computa-
tion time involved). In Figure 1 the concerns are partitioned into
four categories based on whether the advice and/or data changes.
For example, a temporal cross-cutting data concern constructs new
timestamps during some query operations, such as a join operation.
The new timestamps become advice for some data, e.g., a tuple in
the join result. These timestamps may (logically) delete data since
the constructed times may be shorter. As a second example, con-
sider data lineage. Lineage keeps track of all of the data that con-
tributes to a particular result, that is, it constructs advice (metadata)
for data, but the constructed advice does not change the data. As
a third example, a profiling cross-cutting concern generates statis-
tics (new data) about the data usage, but the advice itself does not
change.

AOP can successfully model the kinds of cross-cutting concerns
already researched in databases (e.g., time, provenance) and new
kinds not yet researched. For instance, versioned security where a
magazine subscriber has access to articles at the time the subscrip-
tion was current even after the subscription has ended. Versioned
security can be modeled as a temporal aspect tagging a security as-
pect in our framework, i.e., as meta-metadata. Recursively higher
levels of advice (meta-meta-metadata) can also be modeled.

1.2 Pig Latin
In this paper we propose adapting AOP to Pig Latin [19, 29] to

support cross-cutting data concerns. Pig Latin is a dataflow lan-
guage and cloud computing platform for the analysis of massive
datasets. Developed by researchers at Yahoo, Pig Latin is one of
the first, and is (in our opinion) the best, of the emerging cloud
computing languages for data analysis. Though relatively new, Pig
Latin already has a strong user and development community.1 Pig
Latin is a typical “NoSQL” language. A NoSQL language replaces
SQL, the de facto query language for databases, with a language
that is better suited to programmers. As a dataflow language, Pig
Latin is more amenable than declarative languages, like SQL, to
aspect-oriented techniques. A Pig Latin program is a sequence of
statements. Each statement represents a transformation of some
data.

Pig Latin currently has no support for cross-cutting data con-
cerns. Users must resort to ad hoc techniques to support, for in-
stance, temporal semantics for data. Snodgrass has pointed out the
perils of relying on user good faith to correctly implement tempo-
ral semantics [36]. Often users will not know which cross-cutting
concerns are present nor the semantics of each individual concern.

Pig Latin lacks many of the features found in other database lan-
guages, such as SQL. In the relational model, data is rigidly de-
1http://hadoop.apache.org/pig/

Aspect Specific

Behaviors

result

operator
pre post

DBMS Event Stream

T
e

m
p

o
ra

l

L
in

e
a

g
e

P
ri
v
a

c
y

…

(Joe, Shoes, 40K)

2003 - 2004

2005 - 2007

(Joe, Admin, 100K)

(Sue, Shoes, 50K)

(Fred, Admin, 90K)

2007 - now

2002 - 2004

test suite 20

coders

admin

Advice (metadata)

annotates or tags the data

Data

Figure 2: Opening Pig Latin programs to AOD

scribed by a fixed schema, Pig Latin, on the other hand, is schema-
less. Pig Latin users dynamically load data into a query from text
files or back-end databases. Pig Latin also lacks data modification
operators, such as INSERT, DELETE, and UPDATE. Pig Latin data is
created and maintained by other processes. Not surprisingly, Pig
Latin also has no data constraint specifications. All constraints are
maintained by other processes. Finally, the Pig Latin data model
supports sets and bags, as well as tuples, i.e., it is a non-first normal
form data model. So while sharing some commonalities with other
database query languages, Pig Latin is different, over and above the
cloud computing framework (Hadoop) that supports its back-end.

Figure 2 illustrates the role that a data aspect weaver has to ful-
fill in the evaluation of a Pig Latin program. In the figure, “Data”
is annotated or tagged with “Advice,” which is metadata from a
cross-cutting concern such as privacy. Over time, a stream of Pig
Latin “operators,” e.g., a join, are evaluated. When the operator is
executed, the advice becomes active. Associated with each kind
of advice are “pre,” “post,” and “intra” advice operators that kick
in before, during, and after evaluation of the operation. These op-
erators are specified in a code module which is plugged into the
Pig Latin evaluation engine. For example, suppose that Pig Latin
evaluates a join. For each pair of tuples in the join with temporal
advice, a pre-join operator is called in the temporal module prior
to joining, the intra-join operator is called as part of the join, and a
post-join operator is called after the join. For temporal advice the
pre- and post-joins are no-ops (no action is taken) and the intra-join
is temporal intersection. The operations are specific to each kind of
cross-cutting concern. All of the advice-specific operators are spec-
ified in code that is called at the appropriate time during program
evaluation. The plug-in module for each kind of advice consists of
these operations.

Previously we described how to model data aspects in a rela-
tional database [14], and in the relational algebra [12]. This paper
shares a common motivation with our previous work, but in this
paper we focus on Pig Latin, which has a different data model and
query language. The main contribution of this paper is an extension
of each Pig Latin transformation to support data aspects.

This paper is organized as follows. The next section develops
a motivating example. After that, data aspects are developed in
greater detail. The paper then presents aspect-oriented Pig Latin.
The final sections cover related work and summarize the paper.

14

Subscribers
(Name, City, Amt, Id)

(Maya, Logan, $20, 1)

(Jose, Logan, $15, 2)

(Knut, Ogden, $20, 3)

Table 1: Some data about subscribers to Magazine.com

LOAD …

GROUP A …

A

B

C

FOREACH B …

Figure 3: Dataflow in the simple program

2. MOTIVATION
Assume that Magazine.com stores data about its subscribers in a

collection of Pig relations. A Pig relation is a bag of tuples, similar
to a table in an SQL database. Each tuple is an ordered list of
fields. Each field is a piece of data. Unlike an SQL table, not
all tuples have to have the same number of fields. Moreover, Pig
relations can have values that are themselves tuples, bags, or maps,
something that is not allowed in a relational database. A portion
of the data, the Subscribers relation, is shown in Table 1. Each
tuple in Subscriber records, in order, a name (Name), city (City),
subscription amount (Amt), and a tuple identifier (Id).

2.1 Pig Latin
Magazine.com would like to count the subscribers per city. The

following Pig Latin program computes the desired count.

A = LOAD ’subscribers’ USING PigStorage()

AS (name: chararray, city: chararray,

amount: int);

B = GROUP A BY city;

C = FOREACH B GENERATE city, COUNT(B.name);

DUMP C;

The program has four statements. The first statement loads the data,
and gives a name and a type to each field within a tuple. The state-
ment also establishes the Subscribers relation as the data node A.
A grouping transformation is applied to the data in node A to pro-
duce node B. The data is grouped into bags by value as shown in
Table 2. The data in node B is then processed to generate the name
and count for each city as shown in Table 3. The final statement,
DUMP, displays the data accumulated at node C.

This program has a very simple dataflow, with only three nodes.
To evaluate the program, Pig Latin first constructs a representation
of the dataflow as illustrated in Figure 3. Next it applies query opti-
mization rules to optimize the data flow (for instance the FOREACH
transformation could be combined with the GROUP transformation
to generate only the needed fields while grouping). Only when the
DUMP statement is parsed is the optimized dataflow program eval-
uated using Hadoop, that is, the program is transformed to map-
reduce constructs and executed in parallel.

2.2 Cross-cutting Data Concerns
On-line magazines earn revenue by restricting content to paid

subscribers. Security enforces the restriction. Each subscriber should

B
(Logan, {(Maya, Logan, $20), (Jose, Logan, $15)})

(Ogden, {(Knut, Ogden, $20)})

Table 2: Subscribers grouped by city

C
(Logan, 2)

(Ogden, 1)

Table 3: The count of subscribers

be able to see their own data, but not that of others. Subscribers
complain that once their subscription ends, they are no longer able
to see the content to which they once subscribed, but they should be
able to do so. Magazine.com decides to support both security and
versioned security, whereby subscribers still have access to con-
tent as of the time when they subscribed. To help the programmers
implement the system, Magazine.com also decides that it is impor-
tant to support lineage in query evaluation. Lineage keeps track
of which facts were used to produce a result, thereby helping pro-
grammers understand how the query produced a particular result.

To accommodate the new requirements, which are all cross-cutting
concerns, the designers need to add new data and functionality to
their existing database and its applications. Ideally, the designers
will be able to add without changing a line of existing Pig Latin
programs.

2.3 Aspect-oriented Pig Latin Data
In an aspect-oriented approach, the database designers “tag” data

in the database with advice, creating aspects. The tagging could be
at different levels, i.e., in the Pig Latin data model, the tagged data
could be an attribute value, a tuple, or a relation. We focus on
tuple- and relation-tagging in this paper. The advice that tags a
tuple is assumed to pertain to all of the attribute values within that
tuple, and for a relation, the advice applies to all of the tuples in the
relation. Relation-tagging is useful for establishing default advice
for each tuple in the relation.

Though aspects are developed independently, more than one kind
of advice can tag a tuple or relation, for instance a tuple could be
tagged with both lineage and security advice. The advice can be
combined into a single perspective [13], or remain independent.
Finally, since the advice is data, it too can be advised by meta-
metadata, i.e., metadata is to data as meta-metadata is to metadata.

Several data cuts are concretely represented in Table 4 and Ta-
ble 5 which extend and refine the Magazine.com database example
of the previous section. Each advice tuple is prefixed with a “per-
spective id” (Per), which is the first field in each advice tuple. The
first tuple of Security Advice has a Per of A. A data cut is a pairing of
a tuple id with an advice id. Table 4 shows the aspected Subscribers
relation. The Data Cuts relation weaves advice to data identified
by the Id column. This tagging scheme is repeated for the meta-
metadata (Temporal Meta Advice and Metadata Data Cuts). Each
subscriber is tagged by a security aspect that records the security
on the tuple and a lineage aspect that denotes how the tuple was
constructed. Initially, the lineage is just the identifier of the tuple
itself. The security is a partial order from the lowest levels (Paid
and Lapsed) to the top level (DBA). Only paid subscribers have ac-
cess to the content. The meta-metadata records when the security
advice is current. Jose was a paid subscriber from 2007 to 2008 at
which time his subscription lapsed. If the data is rolled back to its
state current in 2007, Jose should have access to the content of the
site. Said differently, Jose paid for the 2007 to 2008 content and

15

therefore should have access to that data by setting his content per-
spective to some time in that range. An advice tuple shaded in grey
denotes default advice, that is, data advised by relation-tagging.
The default temporal advice starts in 2006 when the site began.

Table 5 extends the database with an aspected Personal Info re-
lation that records personal information about each subscriber. By
default, only the DBA has access to this data.

2.4 Aspect-Oriented Pig Latin Programs
Advice is involved whenever data is used in a query. For in-

stance, suppose that two tuples are to be joined. Sequenced tempo-
ral semantics permits the tuples to be joined only at the times they
both existed. For instance, the tuples with Id 1 and 2 in Table 4
can be joined only at times 2007-now since tuple 2 was not in the
database in 2006.

An advice’s behavior is woven into the evaluation of a Pig Latin
program as shown in Figure 4. In Figure 4(a), the typical dataflow
as depicted. Data at a node R is transformed to that at node X .
Figure 4(b) shows a Pig Latin pattern or template that will replace
the transformation of Figure 4(a). In the aspected case, the relation
at node R consists of three components: a data relation, RD , an
advice relation, RA, and a data cuts relation, RC . Without loss of
generality we focus on a single kind of advice, more generally there
would be several advice relations. Each of these relations must be
transformed to create the three components of the result data node:
XD , XA, and relation, XC .

Another way to conceptualize the weaving is to imagine a Pig
Latin program evaluated simultaneously at two levels: the data
level and the advice level (the cuts attach the advice to the data).
At the data level, the Pig Latin program proceeds as written by
evaluating each transformation on the data. The weaving needs to
add transformations at the advice level to the dataflow. There are
three basic patterns for the dataflow at the advice level.

1. Single tuple - Pig Latin transformations that process a sin-
gle relation tuple-by-tuple have no special operations for ad-
vice. Security, privacy, data quality measures, etc. already
annotate and describe the data. The advice sticks to the data
through the transformation. For example a transformation
to project the values in a column retains the advice for each
value.

2. Pair of tuples - Two Pig Latin relations can be related by
processing pairs of tuples, one chosen from each relation.
For a pair of tuples, the advice that annotates each tuple must
be processed together. For instance, a join operation will
need to join the advice for a pair of tuples while joining the
pair.

3. Multiple tuples - Some Pig Latin transformations relate many
tuples in a single relation, for instance, when grouping a re-
lation, the advice for all of the tuples in the group must be
processed.

The weaving also has to synchronize the advice and data levels af-
ter each transformation since the advice level can impact the data
level (and vice-versa). For example, in the temporal sequenced join
discussed previously, tuples at the data level join only if they also
join at the advice level.

In the next section we develop a specific template for each kind
of Pig Latin transformation. But in general, the weaving is a Pig
Latin program modification whereby each statement in a program is
replaced by a sequence of statements constructed by instantiating
a template for the transformation. This strategy can be extended

FILTER …

X

R

a) Unaspected Pig Latin

X
D

R
D

b) Aspected Pig Latin

XC

R
C

XA

R
A

JOIN …

D
1 D

1

FILTER …

D1

JOIN …

R

X

Figure 4: Dataflow in the simple program

to additional levels of advice, e.g., meta-metadata. The pattern is
repeatedly applied for each level.

3. ASPECT-ORIENTED PIG LATIN
This section describes changes to Pig Latin to support aspect-

oriented data. Recall that each kind of aspect (e.g., security) en-
forces a semantics on the use of the data. All uses must obey that
semantics. We model the bulk of Pig Latin transformations, show-
ing how each is redefined to support data aspects. Each modifica-
tion is described in terms of a pattern or template. The template is
applied to rewrite the corresponding transformation in a Pig Latin
program at the data and advice levels. Each transformation is re-
defined using (non-aspect-oriented) Pig Latin to illustrate that Pig
itself can be used to become aspect-oriented. A key optimization
to the basic strategy, which we call advice inlining, is presented
in Section 3.5. Only data aspects are initially considered; in Sec-
tion 3.6 program aspects are introduced.

We consider three broad categories of Pig Latin transformations:
single, paired, and multiple tuple transformations. We first model
single tuple transformations which involve only one tuple at a time
and are generally simpler than the other cases.

3.1 Single Tuple
The single tuple transformations are FILTER, FOREACH, SPLIT,

SAMPLE, LOAD, DUMP, and STORE. We discuss the FILTER in detail
and only breifly present the other transformations.

3.1.1 FILTER
We first describe FILTER and then present an detailed example

of the transformation using aspected data.
The FILTER transformation selects tuples from a data node that

meet some condition, P .

X = FILTER R ON P;

The aspected-oriented transformation, TFILTERAO , first applies
a FILTER at the data level. As the FILTER may remove some tu-
ples, the data cuts and advice should then be synchronized with
the data, removing extraneous advice, an operation that we call
TRIMAO .

Figure 5 illustrates the basic pattern for FILTER. The TRIMAO

pattern to the right of the figure should be repeated for each level of
advice. The Pig Latin code template for FILTERAO is given below,
with comments enclosed within ‘/* */’.

/* Filter the data */

XD = RD ON P;

16

Subscribers Data Security Lineage Metadata Temporal
Cuts Advice Advice Data Cuts Meta Advice

(Name, City, Amt, Id) (Id, Per) (Per, Sec) (Per, Lin) (Per, MetaPer) (MetaPer, Start, End)
(Maya, Logan, $20, 1) (1, A) (A, Paid) (A, {1}) (B, X) (X, 2007, 2008)

(Jose, Logan, $15, 2) (2, B) (B, Paid) (B, {2}) (C, Y) (Y, 2009, now)

(Knut, Ogden, $20, 3) (2, C) (C, Lapsed) (C, {2}) (A, Z) (Z, 2006, now)

(3, D) (D, Lapsed) (D, {3}) (D, Z)

Table 4: Aspected Subscribers

Personal Info Data Cuts Security Lineage
Advice Advice

(Name, City, Amt, Id) (Id, Per) (Per, Sec) (Per, Lin)
(Maya, maya@aol.com, 5) (5, E) (E, DBA) (E, {5})

(Jose, jose@aol.com, 6) (6, F) (F, DBA) (F, {6})

(Knut, knut@aol.com, 7) (7, G) (G, DBA) (G, {7})

Table 5: Aspected personal information about subscribers

XD

RD

XC

RC

XA

RA

JOIN …

C
FILTER …

A

JOIN …

R

X

FOREACH … FOREACH …

TRIM
AO

Figure 5: The template for FILTERAO

/* TRIM the advice level */

/* Remove extraneous cuts*/

C = JOIN RC BY id, XD BY id;

XC = FOREACH C GENERATE C.id, C.per;

/* Remove extraneous advice */

A = JOIN RA BY per, XC BY per;

XA = FOREACH A GENERATE A.per, A.metadata;

As an example, consider a query to filter subscribers below $20.
At the data level, Maya and Knut pass the filter, but Jose is filtered.
The result is shown in Table 6. In the table, extraneous, inert ad-
vice and data cuts that could be trimmed are highlighted in gray.
TRIMAO will clean up this extra advice and synchronize the advice
level to the data level, but the extraneous advice is harmless (ex-
cept for occupying space) and can be left in place leading to the
alternative, cheaper plan shown in Figure 6.

3.1.2 FOREACH
The FOREACH projects only specified fields, f1, . . . , fn, into the

result.

X = FOREACH R GENERATE f1, . . . , fn;

As all the tuples are retained, the data cuts and advice are un-
changed, and so the template for FOREACHAO is simple.

XD

RD

XC

RC

XA

RA

FILTER …

R

X

Figure 6: An alternative, cheaper template for FILTERAO

/* GENERATE the data */

XD = FOREACH RD GENERATE f1, . . . , fn;

/* Repeat rest of pattern for each level of advice */

XC = RC;

XA = RA;

The template is illustrated in Figure 7. As an example, consider
generating subscriber cities. Each city is generated along with all
of the advice and meta advice.

3.1.3 Split and Sample
A SPLIT transformation partitions a relation into n relations for

parallel processing. The split is based on conditions c1, . . . , cn
where each condition is a predicate involving field values.

SPLIT R INTO X1 IF c1, . . . , Xn IF cn;

A SAMPLE transformation is chooses a random sampling of a rela-
tion. It is used to estimate results. The sample_size is a percentage
of the size of the relation, e.g., 0.01 would represent 1%.

X = SAMPLE R sample_size;

The aspect-oriented versions of these transformations are similar
to FILTERAO . They apply the transformation at the data level and
then remove extraneous data cuts and advice using TRIMAO , or
alternatively, leave the cuts and advice unchanged since extraneous
cuts and advice are harmless.

17

Subscribers Data Security Lineage Metadata Temporal
Cuts Advice Advice Data Cuts Meta Advice

(Name, City, Amt, Id) (Id, Per) (Per, Sec) (Per, Lin) (Per, MetaPer) (MetaPer, Start, End)
(Maya, Logan, $20, 1) (1, A) (A, Paid) (A, {1}) (B, X) (X, 2007, 2008)

(Knut, Ogden, $20, 3) (2, B) (B, Paid) (B, {2}) (C, Y) (Y, 2009, now)

(2, C) (C, Lapsed) (C, {2}) (A, Z) (Z, 2006, now)

(3, D) (D, Lapsed) (D, {3}) (D, Z)

Table 6: Subscribers that paid $20 or more for their subscription, the cells shaded gray can be trimmed

XD

RD

XC

RC

XA

RA

FOREACH …

R

X

Figure 7: The template for FOREACHAO

3.1.4 Load, Store, and Dump
The LOAD transformation loads a relation from disk into memory,

STORE stores an in-memory relation to disk, and DUMP displays a re-
lation. The aspect-oriented versions of these transformations must
be trivially augmented to deal with three relations (the data, the
data cuts, and the advice) rather than a single relation.

3.1.5 User-defined Functions and MapReduce
User-defined functions (UDFs) implemented in Java can be added

to a Pig Latin dataflow. As of Pig version 0.10.0, a MAPREDUCE

transformation can run a Map-Reduce job, also coded in Java. In
both cases, each tuple in a relation is streamed through an arbitrary
program, and output tuples are collected. Our current design only
supports data aspects in Pig Latin, not in Java. Hence users must
rewrite the UDF and Map-Reduce jobs to handle aspected data.
For Aspect-oriented Pig Latin, we currently give the user the op-
tion to join the data relation to the cuts and advice relations prior
to streaming the tuples, or to simply stream the data relation (po-
tentially violating the semantics of the data concerns involved). We
discuss alternative strategies in future work.

3.2 Pair of Tuple Transformations
Paired tuple transformations involve a pair of tuples and gener-

ally invoke an advice-specific operation to process the advice at the
advice level.

3.2.1 Joins
Pig Latin has several kinds of joins: cross, replicated, inner,

outer, skewed, and merge. Additionally Pig Latin has a COGROUP

transformation that groups tuples that would join. Semantically
they are all a variant of an equi-join, where two tables are joined on
the values of one or more fields being equivalent.

X = JOIN R BY fR, S BY fS;

For an aspect-oriented join, JOINAO , advice constrains the join.
If two tuples potentially join at the data level, their advice also
needs to “join” at the advice level (the meaning of a join depends
on the kind of advice). For instance two tuples only join when their
temporal advice overlaps (i.e., the tuples exist at the same time).

Figure 8 shows the template for JOINAO . First each relation in-
volved in the join is merged by joining the data to the data cuts and
then to advice (the joins must be repeated for each metadata level).

JOIN …

SD SC SA
S

D

E

JOIN …

MERGE
AO

RD RC RA

JOIN …

B

R

C

JOIN …

MERGE
AO

XD XC XA

STREAM …

X

FOREACH …

FOREACH …

G

JOIN …

FOREACH …

F

SEPARATE
AO

Figure 8: A JOINAO first merges both relations, then
joins, and finally separates

We call this operation MERGEAO . Next, the two merged relations
are joined, effectively joining at the data level. Then, the result
is streamed through an advice-specific join operation (described in
detail below). Finally, the merged relations are separated into data,
cuts, and advice using the FOREACH transformation. We call the
separation step, SEPARATEAO .

At the advice level, advice is streamed through an advice-specific
join (ADVICE-JOIN). This user-defined function “joins” the advice
for a tuple using an advice-specific technique. Example advice-
specific joins are listed below. These examples assume that the last
four (or two) fields in a tuple are the advice pairs to be tested, and
that the data, ids, and perspectives are called “rest.”

• Temporal advice — Computes the temporal join for pairs of
time periods, i.e., the time when the periods overlap.

temporal-join((rest, t, u, v, w)) =
{(rest, max(t, v,), min(u, w))}

• Lineage advice — Lineage x always joins with lineage y and
manufactures new advice that is the union of the previous
lineage.

lineage-join((rest, x, y)) = {(rest, x
⋃

y))}

• Security advice — A partial order join is performed by keep-
ing the most private group.

18

security-join((rest, x, y)) = {(rest, x), (rest, lca(x,y))}

The ADVICE-JOIN also manufactures a new data cut identifier and
advice reference.

As an example, consider the JOINAO of Subscribers with Per-
sonal Info. First, the two relations are individually merged. Next,
the join is performed at the data level, resulting in the relation
shown in Table 7. At this point, the data level has been joined,
but the advice level has not. After the advice-specific joins are per-
formed and the relation is separated, Table 8 results. In this exam-
ple, no tuples were removed from the join due to incompatible or
mismatching advice, but some of the advice has been trimmed, For
instance the security advice joins only at the level of the DBA which
is the least common ancestor of each pair of security advice values.
The meta-metadata (Temporal Meta Advice) joins only on the in-
teresection of the pair of time intervals. In the final result, the data
cuts identifiers (perspectives) are composed values, manufactured
from the underlying identifiers (perspectives).

3.2.2 Union
In a UNION transformation, the tuples in each relation are put into

a single bag. The union does not eliminate duplicates.

X = UNION R, S;

The aspect-oriented union, UNIONAO , similarly combines the ad-
vice and data cuts (assuming that the ids and references are dis-
joint).

XD = UNION RD, SD;

/* Repeat for each level of advice */

XC = UNION RC, SC;

XA = UNION RA, SA;

3.3 Multiple Tuple
Multiple tuple transformations involve groups or collections of

tuples. The advice for a group needs to be processed as a group.

3.3.1 Grouping
Grouping is important when computing aggregates. Pig Latin

has a GROUP transformation that groups tuples on fields, f1, . . . , fn.

X = GROUP R USING f1, . . . , fn;

Advice constrains the grouping. Two tuples potentially group only
if their advice also groups. For instance two tuples are in the same
group only when their temporal advice overlaps (i.e., the tuples ex-
ist at the same time). The template for GROUPAO is sketched in
Figure 9. First, the data is merged with the cuts and advice, using
the MERGEAO pattern. Next, at the data level, the data is grouped.
Then, the data is streamed through an advice-specific grouping op-
erator, ADVICE-GROUP, to compute the groups for the advice. The
semantics of this operator depends on the kind of advice. The input
to this operator is a set of advice values (the advice for all of the
group members). The output is a refined set of advice.

• Temporal advice — Compute membership constant periods,
that is those intervals of time for which group membership
does not change.

temporal-group(T)
= {(t, u) | (t, _) ∈ T ∧ (_, u) ∈ T ∧
¬(∃(w, _) ∈ T) ∨ ∃(_, w) ∈ T [t < w < u])}

• Lineage advice — Lineage forms a set of the ids of all of the
tuples in the group.

XD

RD

XC

RC

XA

RA

JOIN …

B

GROUP …

R

X

FOREACH …
FOREACH …

C

JOIN …

D

E

STREAM …

FLATTEN …

G

GROUP …

MERGE
AO

GROUP_SEPARATE
AO

Figure 9: The template for GROUPAO

lineage-group(T) = {t.id | t ∈ T}

• Security advice — Each level in the hierarchy is its own
group.

security-group(T) = T

Finally, the grouped data must be separated into cuts and advice by
a GROUP_SEPARATEAO pattern.

As an example, consider grouping the Subscribers relation using
the City field. To simplify this example we assume a single kind
of advice: security advice. The result is shown in Table 9. Each
city will end up in a separate group. But because the cities have
different advice, they will be further split into more groups. As
part of the aspect-specific grouping, new advice corresponding to
each group is manufactured.

3.3.2 Distinct
The DISTINCT transformation eliminates duplicate tuples from

a relation.

X = DISTINCT R;

For aspect-oriented distinct, DISTINCTAO , when duplicates of a tu-
ple are eliminated, the data cuts to the duplicates must be changed
to attach to the tuple that was not eliminated. The duplicate elim-
ination does not coalesce, that is, it does not eliminate or reduce
overlapping or redundant advice.

The template for DISTINCTAO is shown in Figure 10. The cuts
are first merged with the data (the advice does not have to be since it
the distinct is applied at the data level, not the advice level). Next,
the tuples are grouped on all of the data fields, yielding distinct
groups of tuples. Finally, the cuts and advice are separated and
each data tuple gets a new identified. Since the pattern involves
some complexities, we give a code template below.

19

Data Data Cuts Security Advice Lineage Metadata Temporal
Advice Data Cuts Meta Advice

Name, . . ., Id, . . ., Id Id, Per, Id, Per Per, Sec, Per, Sec Per, Lin, Per, Lin Per, M, Per, M M, Start, End, M, Start, End
Maya, . . ., 1, . . ., 5 1, A, 5, E A, Paid, E, DBA A, {1}, E, {5} A, Z, E, Z Z, 2006, now, Z, 2006, now

Jose, . . ., 2, . . ., 6 2, B, 6, F B, Paid, F, DBA B, {2}, F, {6} B, Y, F, Z Y, 2009, now, Z, 2006, now

Jose, . . ., 2, . . ., 6 2, C, 6, F C, Lapsed, F, DBA C, {2}, F, {6} C, X, F, Z X, 2007, 2008, Z, 2006, now

Knut, . . ., 3, . . ., 7 3, D, 7, G D, Lapsed, G, DBA D, {3}, G, {7} D, Z, G, Z Z, 2006, now, Z, 2006, now

Table 7: Subscribers joined with Personal Info prior to advice-specific joins

Data Data Cuts Security Advice Lineage Metadata Temporal
Advice Data Cuts Meta Advice

(Name, . . ., Id) (Id, Per) (Per, Sec) (Per, Lin) (Per, MetaPer (MetaPer, Start, End)
(Maya, . . ., 1.5) (1.5, A.E) (A.E, DBA) (A.E, {1,5}) (A.E, Z) (X, 2007, 2008)

(Jose, . . ., 2.6) (2.6, B.F) (B.F, DBA) (B.F, {2,6}) (B.F, Y) (Y, 2009, now)

(Jose, . . ., 2.6) (2.6, C.F) (C.F, DBA) (C.F, {2,6}) (C.F, X) (X, 2007, 2008)

(Knut, . . ., 3.7) (3.7, D.G) (D.G, DBA) (D.G, {3,7}) (D.G, Z) (Z, 2006, now)

Table 8: Subscribers joined with Personal Info after advice-specific join and SEPARATEAO

MERGE
AO

SEPARATE
AO

XD

RD

XC

RC

XA

RA

JOIN …

C

GROUP …

R

X

FOREACH …

G

FOREACH …

Figure 10: The template for DISTINCTAO

/* Merge the data with the data cuts */

C = JOIN RD BY id, RC BY id;

/* Group the duplicates */

G = GROUP C on all data fields;

/* Generate the data with a minimum cut Id */

XD = FOREACH G GENERATE data fields, min(RD.id);

/* Generate the data cuts */

XC = FOREACH G GENERATE , min(RD.id), RC.ref;

/* Advice is not changed */

XA = RA;

As an example, consider computing distinct cities. First the
subscriber names are generated yielding three tuples. Next the
DISTINCT transformation is applied, yielding two tuples in the re-
sult (Logan and Ogden). The advice for the Logan tuples remains
as three distinct perspectives. The result is shown in Table 10.

3.4 The Example Revisited
We return to the example query of Section 2.1. Assume that we

have a single temporal aspect. The aspect-oriented version of the
program is given below.

A = LOADAO ’subscribers’ USING PigStorage()

AS (name:chararray, city:chararray,

amount:int, id:chararray);

B = GROUPAO A BY dept;

C = FOREACH B GENERATEAO dept, COUNT(B.name);

DUMPAO C;

The aspect-oriented behavior is woven into the program using
the templates described in this section, yielding the following Pig
Latin program.

AD = LOAD ’subscribers.data’ USING PigStorage()

AS (name:chararray, city:chararray,

amount:int, id:chararray);

AC = LOAD ’subscribers.cuts’ USING PigStorage()

AS (id:chararray, per:chararray);

AA = LOAD ’subscribers.advice’ USING PigStorage()

AS (per:chararray, start:int, end:int);

/* Merge the data with the cuts and advice */

B = JOIN AD BY id, AC BY id;

C = JOIN B BY per, AA BY per;

/* Group on the data values */

D = GROUP C USING dept;

/* Stream through aspect-specific grouping */

E = STREAM D THROUGH TEMPORAL-GROUP;

/* Flatten it and regroup using the data and id */

F = FLATTEN E;

BD = GROUP F USING dept, id;

/* Generate the data cuts */

CC = FOREACH F GENERATE id, per;

/* Generate the advice */

CA = FOREACH F GENERATE per, start, end;

/* Generate the result */

CD = FOREACH BD GENERATE dept, COUNT(BD.name);

DUMP CD;

20

Subscribers Data Security
Cuts Advice

(Logan, 11

{(Maya, Logan, $20, 1)}) (11, J) (J, Paid)

(Jose, Logan, $15, 2)})

(Logan, 12, (12, H) (H, Lapsed)

{(Jose, Logan, $15, 2)})

(Ogden, 13, (13, I) (I, Paid)

{(Knut, Ogden, $20, 3)})

Table 9: Grouped subscribers

Cities Data Security Advice Lineage Metadata Temporal
Cuts Advice Data Cuts Meta Advice

(City, Id) (Id, Per) (Per, Sec) (Per, Lin) (Per, MetaPer) (MetaPer, Start, End)
(Logan, 1) (1, A) (A, Paid) (A, 1) (A, X) (X, 2007, 2008)

(Ogden, 3) (1, B) (B, Paid) (B, 2) (B, Y) (Y, 2009, now)

(1, C) (C, Lapsed) (C, 3) (C, Z) (Z, 2006, now)

(3, D) (D, Lapsed) (D, 4) (D, Z)

Table 10: Distinct cities

3.5 Optimizing by Advice In-lining
Maintaining separate data, cuts, and advice relations throughout

the evaluation of a Pig Latin program can incur many invocations of
TRIMAO , MERGEAO , and SEPARATEAO . Since they involve JOINs,
which are expensive, a more optimal strategy is to in-line the ad-
vice at the start of a query, and separate at the end. The in-lining
removes data cuts by attaching the advice directly to the data. The
following template can be used to in-line advice for an aspected
relation. Let RD be the data relation, RC by the cuts relation, and
RA1 , . . . , RAn be n advice relations. The template should be ap-
plied for each level of advice.

I1 = JOIN RA1
by per, RA2

by per;

I2 = JOIN I1 by per, RA3
by per;

. . .

In = JOIN In−1 by per, RAn by per;

I = JOIN In by per, RC by per;

RI = COGROUP RD by id, I by id;

The first n steps join each kind of advice to form a combined per-
spective. Next, the perspective is joined to the data cuts. Finally,
the data is co-grouped with individual perspectives (all the perspec-
tives that would join with the advice).

An example of advice in-lining in given in Table 11.
The benefit of in-lining is that in the templates presented in Sec-

tions 3.1 (Figure 5) to 3.3 (Figure 10), only the operations not
shaded in gray need to be performed on the in-lined data and ad-
vice. The cost of in-lining is incurred once for the query. Prior to a
DUMP or STORE the data must be separated as well.

3.6 Program Aspects
A Pig Latin program can also be aspected. A program aspect

represents a constraint on the relations that are evaluated. Suppose
that a program involves a relation, [RD, RC , RA], and is aspected
by a perspective consisting solely of advice, PA. Then the program
aspect transformation constrains RD to tuples that have advice con-
sistent with the perspective prior to evaluating the program. It does
so as follows.

/* First relate all of the advice, CROSS is

the Cartesian product transformation. */

B = CROSS RA, PA;

/* Generate new advice */

XA = STREAM B THROUGH ADVICE-PROGRAM-ASPECT;

/* Use new advice to remove extraneous data

cuts */

C = COGROUP RC BY ref, XA BY ref;

XC = FOREACH C GENERATE C.id, C.ref;

/* Use new data cuts to remove extran. tuples */

D = COGROUP RD BY id, XC BY id;

XD = FOREACH D GENERATE D.data, D.id;

Each advice tuple is passed through the advice-specific stream,
which leaves the tuple unchanged, trims the tuple, or removes it.

3.7 Complexity Analysis
The increased modeling power of aspect-oriented data comes

with an increased cost. In this section we analyze the worst-case
time complexity, assuming that all of the aspect-oriented transfor-
mations are implemented in Pig Latin (some advice-specific behav-
iors are implemented as user-defined functions). Let D be the size
of each data relation, C be the size of a data cuts relation, and A
be the size of an advice relation. Typically A will be much smaller
than D, and if there is a lot of default advice, C will also be much
smaller than D. Finally, let z be the number of different kinds of
advice, e.g., z is three for the examples in this paper, and let k be
the number of levels of advice, e.g., in our examples, k is 2. We as-
sume that all binary operations, i.e., the various kinds of join, cost
O(n ∗m) where n and m are the size of the operands, and unary
operations, i.e., filtering, sampling, generating, and grouping, cost
O(n). Though this assumption overestimates the join cost, which
in practice (e.g., in a good hash join) can be nearly linear, the as-
sumption is appropriate for our complexity analysis.

To determine the cost of each aspect-oriented transformation,
we summed the cost of every Pig Latin transformation in a tem-
plate. For example a FILTERAO , costs 1 FILTER +k(̇2JOINs and
2 FOREACHs), which yields a total cost of O(D) + O(kDC +
kzAC)+O(kC+kzA), or O(kDC+kzAC) by simplifying the
equation. The analysis states that the cost of FILTERAO is domi-
nated by the cost of the k2̇ JOINs, which concurs with the general
rule of thumb, that the cost of joins dominates query cost.

The analysis is summarized in Table 12. Most of the opera-

21

Subscribers Advice
Name, City, Amt, Id Id, Per, Sec, Lin, {Per, MetaPer, Start, End}

(Maya, Logan, $20, 1) {(1, A, Paid, {1}, {(A, Z, 2006, now)})}

(Jose, Logan, $15, 2) {(2, B, Paid, {2}, {(B, X, 2007, 2008)}),

(2, C, Lapsed, {2}, {(C, Y, 2009, now})}

(Knut, Ogden, $20, 3) {(3, D, Lapsed, {3}, I, {(D, Z, 2006, now})}

Table 11: Advice in-lined Subscribers

Transform Pig Aspect-oriented
Latin Pig Latin

FILTER O(D) O(D+ TRIMAO)
FOREACH O(D) O(D + kA+ kC)
DISTINCT O(D) O(D+ MERGEAO + SEPARATEAO)
JOIN O(D2) O(D2+ MERGEAO + SEPARATEAO)
GROUP O(D) O(kD+ MERGEAO + SEPARATEAO)
UNION O(D2) O(D2 + kC2 + kzA2)
SPLIT/SAMPLE O(D) O(k(D+ TRIMAO))
LOAD/STORE O(D) O(D + kz(C +A))
TRIMAO - O(D(z(CAk)))
MERGEAO - O(D(z(CAk)))
SEPARATEAO - O(D + z(kCA))
Program aspects - O(kDC + kzAC)

Table 12: Complexity Analysis

tions include only the additional cost of processing the cuts and
advice, but five operations are much more expensive: FILTERAO ,
JOINAO , GROUPAO , SPLITAO , and SAMPLEAO . We consider each
in turn. FILTERAO , increases the cost by trimming extraneous cuts
and advice (those that have been filtered from the relation). But
as we pointed out in Section 3.1.1 the extraneous cuts and advice
are harmless and do not need to be removed (other than for con-
sistency), lowering the cost to O(D). A similar speedup applies to
SPLITAO and SAMPLEAO . JOINAO , is expensive because the data
has to be joined to the advice and the data cuts for each join. This
adds the cost of a merge and separate phase. Finally GROUPAO

is inherently more expensive than GROUP, because data must be
grouped by both data and metadata, increasing both the number of
groups and the cost of computing each group.

Advice in-lining can lower the cost of many of the operations
since the relations do not have to be merged, separated, or trimmed.
The cost of in-lining is an additional merge and separate phase.

4. IMPLEMENTATION
Apache Pig is an open source, Java implementation of Pig Latin.2

We modified the source code to implement Aspect-oriented Pig
Latin. Our modifications and an experimental reproducibility pack-
age can be found at the project’s website.3 The modified architec-
ture is given in Figure 11. A Pig Latin program is input to the
Aspect-oriented Pig Latin Weaver. The weaver translates an as-
pected Pig Latin to a Pig Latin program by weaving the aspects into
the code using the transformations discussed in Section 3. JARs
that contain the advice-specific operations are also part of the trans-
formation. That program is then compiled into a Map-Reduce job,
which can be run on Hadoop (or on a local machine). The input
data resides on the Hadoop Distributed File System (HDFS). As
the Map-Reduce job evaluates it also calls advice-specific behavior
in the JARs.
2http://pig.apache.org
3http://cs.usu.edu/~cdyreson/AOD

T
e

m
p
o
ra

l

L
in

e
a
g
e

P
ri
va

cy

Aspect-oriented

Pig Latin Weaver
Pig Latin Compiler

Map

Reduce HDFSMap

Reduce HDFSMap

Reduce HDFSMap

Reduce HDFSMap

Reduce HDFSMap

Reduce HDFS

Hadoop

Map Reduce

Job

Advice JARs

…

PigLatin Program

Aspected Pig Latin Program

Result

Figure 11: An overview of the implementation architecture

We implemented the data weaver by rewriting the Pig Latin parser
(which is specified using ANTLR4). We also had to modify some
run-time libraries to pass schema information within Hadoop. Nor-
mally a Map-Reduce job does not know the schema of the data,
but since we need to sometimes find the advice data in a tuple each
tuple needs to know the schema of the relation to which it belongs.
So we modified the system to retain schema information.

The cost of weaving is trivial; the weaver takes a fraction of a
second since most Pig Latin programs are tens of lines in length.
To get an idea of the cost of evaluating a data analysis program that
enforces metadata semantics, we designed an experiment to mea-
sure the cost of single-tuple and tuple-pair operations. We chose
FILTERAO as a representative single-tuple operation, and JOINAO

for the tuple-pair operation. We generated three datasets of 5 mil-
lion, 10 million, and 15 million tuples, respectively. We then as-
pected the tuples with “best-case” advice (each tuple is aspected by
the same advice, so the advice is a single tuple) and “worst-case”
advice (each tuple has different advice, so there are 5 million advice
tuples for 5 million data tuples). We used only one kind of advice:
temporal. For both cases the cuts relation has the same number
of tuples as the data relation (so 5 million data cuts for 5 million
data tuples). To mitigate the impact of parallel evaluation, we ran
Hadoop on a single Linux machine with two Intel 686 2.66 GHZ
chips, 3.5 GB of RAM, and mirrored 500 GB disks (RAID level
1). We tested using Java 1.6, Pig 0.10.0, and Hadoop 1.0.1. We ran
each test five times and took the average cost. Times were measured
using the “real” system time captured by Linux’s time command.
We measured the cost of loading and storing each dataset together
with the operation. We then subtracted from the cost, the I/O time.
Aspect-oriented I/O costs are approximately triple the non-aspected
case in the experiment since advice and cuts relations must also be
read and stored. In a long program with several transformations the
I/O cost would be spread out over several operations.

Table 13 gives the result of the experiment. The times are given

4http://www.antlr.org

22

Transform Pig Aspect-oriented Advice
Latin Pig Latin In-lined

best worst
LOAD/STORE

5 million 22s (4.4) 48s (9.7) 67s (13.5) -
10 million 37s (3.7) 88s (8.8) 114s (11.4) -
15 million 52s (3.5) 112s (7.4) 178s (11.8) -
FILTER - Filters on the condition “true”
5 million 5s (1.0) 120s (24.0) 132s (26.4) 5s (1.0)
10 million 10s (1.0) 220s (22.0) 250s (25.0) 11s (1.1)
15 million 13s (0.9) 310s (20.6) 371s (24.7) 15s (1.0)
JOIN - Equi-join on data fields
5 million 112s (22.4) 236s (47.2) 353s (70.6) 150s (30.0)
10 million 230s (23.0) 437s (43.7) 587s (58.7) 271s (27.1)
15 million 335s (22.3) 678s (45.2) 825s (55.0) 370s (24.6)

Table 13: Evaluation Experiment

in seconds and in parentheses, the throughput, which is measured
as the number of seconds per million tuples (lower is better). While
aspect-oriented Pig Latin programs cost more, they also do more;
they enforce metadata semantics in data processing. Un-aspected
Pig Latin programs do not observe such semantics. The big in-
crease in cost is for FILTERAO . This is because FILTERAO adds
two joins to the filtering. But as we observed in Section 3.1.1, the
joins can be deferred since they only remove “inert” data.

The table also shows the cost for the advice in-lining optimiza-
tion on the “best” data case. For FILTERAO , advice in-lining makes
the tuples slightly larger, but performs the same filtering as the non-
aspected case. For JOINAO , the non-aspected JOIN is coupled with
a STREAM transformation to join advice. The advice in-lining oper-
ations do not show the cost of the in-lining.

5. RELATED WORK
There is a little previous research on support for manifold kinds

of metadata in database management systems, though descriptive
metadata has been studied in detail (c.f., [6, 10, 20]). Most closely
related to this paper is the AUCQL language for querying differ-
ent kinds of metadata in a semi-structured data model [13], which
was later developed into a query language, MetaXQuery, for XML
data [23, 24]. This paper in contrast focuses on Pig Latin.

The database research community has researched models and
support for specific kinds of metadata, or in our terminology, spe-
cific kinds of aspects. One of the most important and most widely
researched kinds is temporal. Temporal extensions of every data
model exist, for instance, relational [35], object-oriented [34], and
XML [17]. This paper generalizes the work in relational tempo-
ral databases by proposing an infrastructure that supports many
kinds of advice, not just temporal advice. More specifically we ex-
tend tuple-timestamped models [22], whereby the temporal meta-
data modifies the entire tuple. Other tuple-level, relational model
extensions to support security, privacy, probabilities, uncertainty,
and reliability have been researched, but no general framework or
infrastructure exists which can support all the disparate varieties,
other than our own work [12, 14]. This paper makes two important
novel contributions. First, we develop aspect-oriented program-
ming for Pig Latin, which shares some operations in common with
relational algebra, but has different transformations, such as group-
ing, distinct, sample, split, load, and store. Additionally, Pig Latin
has a non-1NF data model, though in this paper we focused only on

the 1NF aspects. The second contribution is extending the frame-
work to meta-metadata as advice tagging advice.

There are several systems that have aspect-like support for com-
bining different kinds of metadata. Mihaila et al. suggest annotat-
ing data with quality and reliability metadata and discuss how to
query the data and metadata in combination [27]. The SPARCE
system wraps or super-imposes a data model with a layer of meta-
data [28]. The metadata is active during queries to direct and con-
strain the search for desired information. Systems that provide
mappings between metadata (schema) models are also becoming
popular [4, 26]. Our approach differs from these systems by fo-
cusing on Pig Latin to support AOP, and by building a framework
whereby the behavior of individual data aspects can be specified as
“plug-in” components.

The information retrieval community has been very active in re-
searching descriptive metadata, in particular metadata that is used
to classify knowledge [37]. The Dublin Core is a commonly used
classification standard [38]. Commercial and research systems [1]
to manage (descriptive) metadata collections have been developed,
as well as methods to automatically extract content-related meta-
data [21, 25]. The focus of the information retrieval research is on
how to best use, manage, and collect metadata to describe data to
improve search [18]. In contrast, our focus is on modeling data as-
pects which impose a semantics on the use of the data, i.e., they go
beyond the simple, descriptive tagging of data.

Finally, our goal in this paper, consistent with AOP and unlike
many of the above approaches, is to maximally reuse existing lan-
guages and systems. Hence we focus on using Pig Latin itself
to support aspect-oriented data by weaving the support for cross-
cutting concerns, expressed in Pig Latin, into Pig Latin programs.

6. CONCLUSIONS
Cloud computing data analysis platforms like Hadoop do a poor

job of supporting cross-cutting data concerns. Data has a wide va-
riety of cross-cutting concerns: time, security, reliability, privacy,
quality, summaries, rankings, and uncertainty. In this paper we
adapted techniques from aspect-oriented programming (AOP) to
Pig Latin. Pig Latin is a dataflow language for analyzing data in
the cloud. We proposed annotating Pig data using data aspects. A
data aspect binds advice (metadata) to data. The advice also has
semantics that must be observed when the data is used in a query.
We showed how to weave Pig Latin into a Pig Latin program to
support cross-cutting concern data concerns.

In future we plan to address optimization, and management of
data cuts, in particular mechanisms for tagging data with advice.
Pig Latin does not have any data management role, so this would
be prior to analysis by Pig Latin. We also plan to investigate new
optimization rules for Aspect-oriented Pig Latin. We anticipate
that several optimizations are possible, such as keeping a relation
joined to its advice throughout evaluation of a program rather than
splitting it into data, cuts, and advice relations after each transfor-
mation. We also need better support for UDFs. Each UDF must
currently be written to correctly implement aspects. This places a
great burden on UDF coders. To avoid requiring a user to mod-
ify each UDF, we need to instead partition the data into sets of
tuples that have the same advice, and evaluate the UDF for only
the given set. To the best of our knowledge there is no research
yet on such partitioning for cloud computing. An alternative solu-
tion is to re-engineer a programming language like Java to support
data aspects. Consider for instance an IF statement that compares
two values tagged with temporal metadata. For some time periods
the IF condition may be true, yet false for others, so each branch
might need to be evaluated (for different time periods), resulting in

23

a very different IF than currently exists in Java. This is also an open
problem to the best of our knowledge.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-

ence Foundation under Grant No. 1144404 entitled “III: EAGER:
Aspect-oriented Data Weaving.” Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National
Science Foundation.

8. REFERENCES
[1] M. Q. W. Baldonado, K. C.-C. Chang, L. Gravano, and

A. Paepcke. Metadata for Digital Libraries: Architecture and
Design Rationale. In ACM DL, pages 47–56, 1997.

[2] C. Batini and M. Scannapieco. Data Quality: Concepts,
Methodologies and Techniques. Data-Centric Systems and
Applications. Springer, 2006.

[3] O. Benjelloun, A. D. Sarma, A. Y. Halevy, M. Theobald, and
J. Widom. Databases with Uncertainty and Lineage. VLDB
J., 17(2):243–264, 2008.

[4] P. A. Bernstein. Applying Model Management to Classical
Meta Data Problems. In CIDR, 2003.

[5] E. Bertino, G. Ghinita, and A. Kamra. Access Control for
Databases: Concepts and Systems. Foundations and Trends
in Databases, 3(1-2):1–148, 2011.

[6] D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya.
An Annotation Management System for Relational
Databases. In VLDB, pages 900–911, 2004.

[7] K. Birman, G. Chockler, and R. van Renesse. Toward a
Cloud Computing Research Agenda. SIGACT News,
40(2):68–80, June 2009.

[8] R. Bose and J. Frew. Lineage Retrieval for Scientific Data
Processing: A Survey. ACM Computing Surveys, 37(1):1–28,
2005.

[9] P. Buneman and W. C. Tan. Provenance in Databases. In
SIGMOD Conference, pages 1171–1173, 2007.

[10] L. Chiticariu, W. C. Tan, and G. Vijayvargiya. DBNotes: A
Post-It System for Relational Databases Based on
Provenance. In SIGMOD Conference, pages 942–944, 2005.

[11] D. E. Denning and P. J. Denning. Data Security. ACM
Comput. Surv., 11(3):227–249, Sept. 1979.

[12] C. E. Dyreson. Aspect-Oriented Relational Algebra. In
EDBT, pages 377–388, 2011.

[13] C. E. Dyreson, M. H. Böhlen, and C. S. Jensen. Capturing
and Querying Multiple Aspects of Semistructured Data. In
VLDB, pages 290–301, 1999.

[14] C. E. Dyreson and O. U. Florez. Data Aspects in a Relational
Database. In CIKM, pages 1373–1376, 2010.

[15] C. E. Dyreson, R. T. Snodgrass, F. Currim, S. Currim, and
S. Joshi. Weaving Temporal and Reliability Aspects into a
Schema Tapestry. Data Knowl. Eng., 63(3):752–773, 2007.

[16] B. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving
Data Publishing: A Survey of Recent Developments. ACM
Comput. Surv., 42(4):14:1–14:53, June 2010.

[17] D. Gao and R. T. Snodgrass. Temporal Slicing in the
Evaluation of XML Queries. In VLDB, pages 632–643, 2003.

[18] H. Garcia-Molina, D. Hillmann, C. Lagoze, E. D. Liddy, and
S. Weibel. How Important is Metadata? In JCDL, page 369,
2002.

[19] A. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. Narayanam, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava. Building a Highlevel Dataflow System on top
of MapReduce: The Pig Experience. PVLDB,
2(2):1414–1425, 2009.

[20] F. Geerts, A. Kementsietsidis, and D. Milano. MONDRIAN:
Annotating and Querying Databases through Colors and
Blocks. In ICDE, page 82, 2006.

[21] L. Gravano, P. G. Ipeirotis, and M. Sahami. QProber: A
System for Automatic Classification of Hidden-Web
Databases. ACM Trans. Inf. Syst., 21(1):1–41, 2003.

[22] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unification of
Temporal Data Models. In ICDE, pages 262–271, 1993.

[23] H. Jin and C. E. Dyreson. Sanitizing using Metadata in
MetaXQuery. In SAC, pages 1732–1736, 2005.

[24] H. Jin and C. E. Dyreson. Supporting Proscriptive Metadata
in an XML DBMS. In DEXA, pages 479–492, 2008.

[25] D. Lee and Y. Hwang. Extracting Semantic Metadata and its
Visualization. ACM Crossroads, 7(3):19–27, Mar. 2001.

[26] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A
Programming Platform for Generic Model Management. In
SIGMOD Conference, pages 193–204, 2003.

[27] G. A. Mihaila, L. Raschid, and M.-E. Vidal. Using Quality of
Data Metadata for Source Selection and Ranking. In WebDB
(Informal Proceedings), pages 93–98, 2000.

[28] S. Murthy, D. Maier, L. M. L. Delcambre, and S. Bowers.
Superimposed Applications using SPARCE. In ICDE, page
861, 2004.

[29] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-so-Foreign Language for Data
Processing. In SIGMOD Conference, pages 1099–1110,
2008.

[30] G. Özsoyoglu and R. T. Snodgrass. Temporal and Real-Time
Databases: A Survey. IEEE Trans. Knowl. Data Eng.,
7(4):513–532, 1995.

[31] S. Pearson and A. Benameur. Privacy, Security and Trust
Issues Arising from Cloud Computing. In IEEE Cloud
Computing (CloudCom), pages 693–702, Dec. 2010.

[32] A. Rashid. Aspect-Oriented Database Systems. Springer,
2003.

[33] A. Rashid and N. Loughran. Relational Database Support for
Aspect-Oriented Programming. In NetObjectDays, pages
233–247, 2002.

[34] R. T. Snodgrass. Temporal Object-Oriented Databases: A
Critical Comparison. In Modern Database Systems, pages
386–408. 1995.

[35] R. T. Snodgrass, editor. The TSQL2 Temporal Query
Language. Kluwer, 1995.

[36] R. T. Snodgrass. Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann, 1999.

[37] A. Tannenbaum, editor. Metadata Solutions: Using
Metamodels, Repositories, XML, and Enterprise Portals to
Generate Information on Demand. Addison-Wesley, 2001.

[38] H. Wagner and S. Weibel. The Dublin Core Metadata
Registry: Requirements, Implementation, and Experience. J.
Digit. Inf., 6(2), 2005.

[39] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou. Security
and Privacy in Cloud Computing: A Survey. In International
Conference on Semantics Knowledge and Grid (SKG), pages
105 –112, Nov. 2010.

24

