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Abstract. In this paper we apply the aspect-oriented programming (AOP) paradigm 
to Pig Latin, a dataflow language for cloud computing. Missing from Pig Latin is 
support for cross-cutting data concerns such as versioning, privacy, and reliability. 
AOP techniques can be used to weave metadata around Pig data. The metadata 
imbues the data with additional semantics that must be observed in the evaluation of 
Pig Latin programs. In this paper we show to modify Pig Latin to process data 
woven together with metadata. The data weaver is a layer that maps a Pig Latin 
program to an augmented Pig Latin program using Pig Latin templates or patterns. 
We also show how to model additional levels of advice, i.e., meta-metadata. 

1 Introduction 

No matter whether data is stored in a database, flat file, spreadsheet, or as persistent 
objects, data has cross-cutting concerns. A cross-cutting data concern is a data need that 
is universal (potentially applicable to an entire database) and widespread (can be used to 
enhance many different databases). Many data collections have cross-cutting data 
concerns, and as a collection evolves, new concerns may arise. For instance, a new 
privacy policy is implemented to hide certain information in a Facebook page. A privacy 
cross-cutting concern could be added to the relevant Facebook data to hide it from the 
general public. Data quality [3],[17] provenance [5],[6] accuracy and lineage [4],[29], 
time, security, reliability and performance are potential cross-cutting concerns. Each 
concern may have an individual and distinct semantics. 

In spite of many years of research on individual concerns, e.g., 30+ years of research in 
temporal databases, research and industrial database management systems (DBMSs) lack 
support for cross-cutting data concerns (though some DBMSs support individual 
concerns, e.g., security). DBMSs are large, complex systems and not designed to be easily 
configured or modified to support a cross-cutting concern. Developers currently have to 
rely on ad-hoc techniques to add concerns to a data collection. 

To better support cross-cutting data concerns a new approach is needed, one that looks 
to fields outside of databases for useful techniques and insights. Aspect-oriented 
programming (AOP) provides a framework that can be adapted to our needs. AOP was 
developed to add cross-cutting concerns to a program without having to reprogram. In 
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AOP, an aspect weaver injects code, called advice, into a program at specified places, 
known as point cuts, to add new functionality to an existing program. 

Previously we employed aspect-oriented techniques to create aspect-oriented data 
(AOD) for data stored in the relational model [10],[11]. AOD “tags” data with metadata 
from a cross-cutting data concern to create a data aspect. The aspect becomes active 
whenever the data is used. A data aspect weaver weaves behavior for the cross-cutting 
concern into the evaluation of a query, constraint, or object management operation. AOD 
can successfully model the kinds of cross-cutting concerns already researched in 
databases (e.g., time, provenance) and new kinds not yet researched. For instance, 
versioned security where a magazine subscriber has access to articles at the time the 
subscription was current even after the subscription has ended. Versioned security can be 
modeled as a temporal aspect tagging a security aspect in our framework, i.e., as meta-
metadata. Recursively higher levels of advice (meta-metadata) can also be modeled. We 
showed how to weave behavior into the relational algebra [11]. There has also been other 
research in using AOP in databases. Research has addressed using aspect-oriented 
techniques to program databases [24], using a relational database to support AOP [23], 
and applying AOP to XML schema [9]. 

Figure 1 gives a broad classification of the space of cross-cutting data concerns that 
can be addressed using an AOD approach. In general, a data aspect has access to two 
things: data and advice, which is the metadata that annotates the data. A data aspect 
becomes active when the data is used in an operation in the sense that the aspect can 
change (insert, update, or modify) the data or make no change. The aspect could also 
change the advice. In general, change or no change are the only possible data effects 
(ignoring side effects like computation time involved). In Figure 1 the concerns are 
partitioned into four categories based on whether the advice and/or data changes. For 
example, a temporal cross-cutting data concern constructs new timestamps during some 
query operations, such as a join operation. The new timestamps become advice for some 
data, e.g., a tuple in the join result. This timestamps may (logically) delete data since the 
constructed times may be shorter. As a second example, consider data lineage. Lineage 
computes as metadata references to all of the data that contributes to a particular result, 
that is, it constructs advice for data, but the constructed advice does not change the data. 
As a third example, a profiling cross-cutting concern generates statistics (new data) about 
the data usage, but the advice itself does not change.  

In this paper we propose adapting AOP to Pig Latin [22] to support cross-cutting data 
concerns. Pig Latin is a dataflow language and cloud computing platform for the analysis 
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of massive datasets. Developed by researchers at Yahoo, Pig Latin is one of the first, and 
is (in our opinion) the best, of the emerging cloud computing languages for data analysis. 
Though relatively new, Pig Latin already has a strong user and development community1. 

This paper is organized as follows. The next section develops a motivating example. 
After that, data aspects are developed in greater detail. The paper then presents aspect-
oriented Pig Latin. The final sections cover related work and summarize the paper. 

2 MOTIVATION 

Assume that Magazine.com stores data about its subscribers in a collection of Pig 
relations. A Pig relation is a bag of tuples, similar to a table in an SQL database. Each 
tuple is an ordered list of fields. Each field is a piece of data. Unlike an SQL table, not all 
tuples have to have the same number of fields. Moreover, Pig relations can have values 
that are themselves tuples, bags, or maps, something that is not allowed in a relational 
database. A portion of the data, the Subscriber  relation, is shown in Table 1. Each 
tuple in Subscriber  records, in order, a name, city, and subscription amount. 

2.1 Pig Latin 

Magazine.com would like to count the subscribers per city. The following Pig Latin 
program computes the desired count. 

  A = LOAD 'subscribers' USING PigStorage()  
        AS (name: chararray, city: chararray, amoun t: int); 
  B = GROUP A BY city; 
  C = FOREACH B GENERATE city, COUNT(B.name); 
  DUMP C; 

The program has four statements. The first statement loads the data, and furthermore 
gives a name and a type to each field within a tuple in the data. The statement also 
establishes the data node A. A grouping transformation is applied to the data in node A to 
produce node B. The data is grouped into bags by value as shown in Table 2.  The data in 
node B is then processed to generate the name and count for each city as shown in Table 3. 
The final statement, DUMP, displays the data accumulated at node C. 

This program has a very simple dataflow, with only three nodes. To evaluate the 
program, Pig Latin first constructs a representation of the dataflow as illustrated in Figure 
2. Next it applies query optimization rules to optimize the data flow (for instance the 
GENERATE transformation could be combined with the GROUP transformation to generate 
only the needed fields while grouping). Only when the DUMP statement is parsed is the 

                                                           
1 http://hadoop.apache.org/pig/  
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optimized dataflow program evaluated using Hadoop, that is, the program is transformed 
to map-reduce constructs and executed in parallel. 

On-line magazines earn revenue by restricting content to paid subscribers. Security 
enforces the restriction. For data, each subscriber should be able to see their own data, but 
not that of others. Subscribers complain that once their subscription ends, they are no 
longer able to see the content to which they once subscribed, but they should be able to do 
so. Magazine.com decides to support both security and versioned security, whereby 
subscribers still have access to content as of the time when they subscribed. To help the 
programmers implement the system, Magazine.com also decides that it is important to 
support lineage in query evaluation.  Lineage keeps track of which facts were used to 
produce a result, thereby helping programmers understand how the query produced a 
particular result. 

To accommodate the new requirements, all cross-cutting concerns, the designers need 
to add new data and functionality to their existing database and its applications. Ideally, 
the designers will be able to add without changing a line of existing Pig Latin programs.  

2.2 Aspect-oriented Pig Latin Data 

Pig Latin is a “NoSQL” language. A NoSQL language replaces SQL with a language that 
is better suited to programmers. Pig Latin is more amenable than declarative languages, 
like SQL, to aspect-oriented techniques. A Pig Latin program is a sequence of statements. 
Each statement represents a transformation of some data. 

Pig Latin does not support cross-cutting data concerns. Users must resort to ad hoc 
techniques to implement, for instance, a temporal semantics for data. Snodgrass has 
pointed out the perils of relying on user good faith to correctly implement temporal 
semantics [27]. Usually Pig Latin programmers will not know which cross-cutting data 
concerns are present nor know how to program the semantics of an individual concern. 

Pig Latin lacks many of the features found in other database languages. Pig Latin is a 
schema-less language. In the relational model of data, data is rigidly described by a fixed 
schema, but in Pig Latin, users load data from text files or back-end databases by 
sketching the types and number of each column in a relation in a query. Pig Latin also 
lacks data modification operators, the data is (assumed to be) created and maintained by 
other processes. Not surprisingly, Pig Latin also has no data constraint specifications. All 

 Subscriber  

 (Maya, Logan, $20)  
 (Jose, Logan, $15)  
 (Knut, Ogden, $20)  
     

Table 1 Some data about subscribers to 
Magazine.com 

 

 

LOAD …

GROUP A …

A

B

C

FOREACH B …

LOAD …

GROUP A …

A

B

C

FOREACH B …

 

Figure 2 Dataflow in the simple program 
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Table 2 Subscribers grouped by city 
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constraints are maintained by other processes. Finally, the Pig Latin data model supports 
sets and bags, as well as tuples; it is a non-first normal form (1NF) data model. So while 
sharing some commonalities with other database query languages, Pig Latin is different, 
over and above the cloud computing framework (Hadoop) that supports its back-end. 

In an aspect-oriented approach, the database designers “tag” data in the database with 
advice, creating aspects.  The tagging could be at different levels, i.e., in the Pig Latin data 
model, the tagged data could be an attribute value, a tuple, or a relation. We focus on 
tuple- and relation-tagging in this paper. The advice that tags a tuple is assumed to pertain 
to all of the attribute values within that tuple, and for a relation, the advice applies to all of 
the tuples in the relation. Relation-tagging is useful for establishing default advice for 
each tuple in the relation. 

Though aspects are developed independently, more than one kind of advice can tag a 
tuple or relation, for instance a tuple could be tagged with both lineage and security 
advice. The advice can be combined into a single perspective [8], or remain independent. 
Finally, since the advice is data, it too can be advised by meta-metadata. That is, metadata 
is to data as meta-metadata to metadata. 

Several data cuts are concretely represented in Table 4 and Table 5 which extend and 
refine the subscriber database example of the previous section. We assume that each data 
tuple has an “ID ” to allow it to be identified. This is the final field in each data tuple. For 
instance Maya's subscription is identified as 1. Next, each advice tuple is prefixed with a 
“perspective id” (Per ), which is the first field in each advice tuple. The first tuple of 
Security Advice  has a Per  of A. A data cut is a pairing of a tuple id with an advice 
id. Table 4 shows the aspected Subscribers  relation. The Data Cuts  relation 
weaves advice to data identified by the RF column. This tagging scheme is repeated for 
the meta-metadata (Temporal Meta Advice  and Metadata Data Cuts ). Each 
subscriber is tagged by a security aspect that records the security on the tuple and a 
lineage aspect that denotes how the tuple was constructed. Initially, the lineage is just the 
identifier of the tuple itself.  The security is a partial order from the lowest levels (Paid  
and Lapsed ) to the top level (DBA). Only paid subscribers have access to the content. 
The meta-metadata records when the security advice is current. Jose was a paid subscriber 
from 2007 to 2008 at which time his subscription lapsed. If the data is rolled back to its 
state current in 2007, Jose should have access to the content of the site. Said differently, 
Jose paid for the 2007 to 2008 content and therefore should have access to that data by 
setting his content perspective to some time in that range. An advice tuple shaded in grey 
denotes default advice, that is, data advised by relation-tagging.  The default temporal 
advice starts in 2007 when the site began.  

Table 5 extends the database with an aspected Personal Info  relation that records 
personal information about each subscriber. By default only the DBA can access this data. 

Subscribers  
Data 
Cuts 

 
Security Advice 

 Lineage 
Advice 

 Metadata 
Data Cuts 

 Temporal Meta 
Advice 

 Name  City   Amt  ID  RF ID  Per Sec MetaID  Per L in  RF MetaID  MetaId Start End 
(Maya, Logan, $20, 1)  (1, A)  (A, Paid, I)  (A, {1 })  (II, X)  (X, 2007, 2008) 
(Jose, Logan, $15, 2)  (2, B)  (B, Paid,II)  (B, {2 })  (III, Y)  (Y, 2009, now) 
(Knut, Ogden, $20, 3)  (2, C)  (C, Lapsed, III)  (C , {3})  (I, Z)  (Z, 2007, now) 

  (3, D)  (D, Lapsed, I)  (D, {3})     
 

Table 4 Aspected subscribers 
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2.3 Weaving Behavior into Pig Latin Programs 

An advice’s behavior has to be woven into the evaluation of a Pig Latin program. The 
weaving technique that we adapt is to modify each transformation in a dataflow program 
is depicted in Figure 3. In Figure 3(a), the typical dataflow is depicted, data at a node R is 
transformed to that at node X. Figure 3(b) shows a Pig Latin pattern or template that will 
replace the transformation of Figure 3(a). In the aspected case, the relation at node R 
consists of three components: a data relation, RD, an advice relation, RA, and a data cuts 
relation, RC. Without loss of generality we focus on a single kind of advice, more 
generally there would be several advice relations. Each of these relations must be 
transformed to create the three components of the result data node: XD, XA, and relation, 
XC. In the next section we develop a specific template for each kind of Pig Latin 
transformation. But in general, the weaving is Pig Latin program modification whereby 
each statement in a program is replaced by a sequenced of statements constructed by 
instantiating a template for the transformation. 

This strategy can be extended to additional levels of advice, e.g., meta-metadata. The 
pattern is repeatedly applied for each level as will be developed in the next section. 

3 Aspect-Oriented Pig Latin 

This section describes modifications of Pig Lain to support aspect-oriented data. Recall 
that each kind of aspect (e.g., security) enforces a semantics on the use of the data. All 
uses must obey that semantics. We model the bulk of Pig Latin transformations, showing 
how each is redefined to support data aspects. Each transformation is redefined using 
(non-aspect-oriented) Pig Latin to illustrate that Pig Latin itself can be used to become 
aspect-oriented.  

Each of the modifications is described in terms of a pattern or template. The template is 
applied to rewrite the corresponding transformation in a Pig Latin program. 

We consider two broad categories of Pig Latin transformations: single vs. multiple 
tuple transformations. We first model single tuple transformations which involve only one 
tuple at a time and are generally simpler than the multiple tuple case. 

3.1 Single Tuple 

The single tuple transformations are FILTER , GENERATE, SPLIT , SAMMPLE, LOAD, DUMP, and  
STORE. 

Personal Info  Data Cuts 
 Security 

Advice 
 Lineage 

Advice 
 

(Maya, maya@aol.com, 5)  (5, E)  (E, DBA)  (E, {5})  
(Jose, jose@foo.com, 6)  (6, F)  (F, DBA)  (F, {6})  
(Knut, knut@aol.com, 7)  (7, G)  (G, DBA)  (G, {7})  

         

Table 5 Aspected personal information about subscribers 
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3.1.1 FILTER 
The FILTER  transformation selects tuples from a data node that meet some condition, P. 

   X = FILTER R on P; 

As the FILTER  may remove some tuples, the data cuts and advice should be synchronized 
with the data, removing extraneous advice, following the FILTER . The template for 
FILTER AO is given below, with comments enclosed within '/* */ '. 

   /* Filter the data */ 

   XD = FILTER RD on P; 
 
   /* The code below is optional, repeated for each le vel of advice */ 
   /* Remove extraneous cuts (cuts for tuples that wer e removed by  
    filtering), remove by computing all the cuts st ill needed. */ 

   C = JOIN RC BY id, XD BY id; 

   XC = FOREACH C GENERATE C.id , C.ref; 
 
 /* Remove extraneous advice */ 

   A = JOIN RA BY ref, XC BY ref; 

   XA = FOREACH A GENERATE A.ref,  A.data; 

Figure 4 illustrates the basic pattern for the FILTER  transformation. The pattern to the 
right of the FILTER  transformation should be repeated for each level of advice. As an 
example, consider a query to filter subscribers below $20. The result is shown in Table 6. 
Maya and Knut are filtered, and synchronized with the advice to retain only their data cuts 
and advice tuples. Alternatively, the extraneous advice is harmless (except for occupying 
space) and can be left in place leading to the alternative, cheaper plan shown in Figure 5. 

3.1.2 GENERATE 
The GENERATE transformation projects only specified fields, f1, ... , fn,  into the result. 
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Figure 3 Weaving by template instantiation 
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Figure 4 The pattern for FILTER AO 

 

Subscribers  
Data 
Cuts 

 
Security Advice 

 Lineage 
Advice 

 Metadata 
Data Cuts 

 Temporal Meta 
Advice 

 Name  City   Amt  ID  RF ID  Per Sec MetaID  Per L in  RF MetaID  MetaId Start End 
(Maya, Logan, $20, 1)  (1, A)  (A, Paid, I)  (A, {1 })  (I, Z)  (Z, 2007, now) 
(Knut, Ogden, $20, 3)  (3, D)  (D, Lapsed, I)  (D, {3})     

 

Table 6 Subscribers that paid $20 or more for their subscription 
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        X = FOREACH R GENERATE f1, ... , fn; 

As all the tuples are retained, the data cuts and advice are unchanged, and so the template 
for GENERATEAO is simple.  

   /* GENERATE the data */ 

   XD = FOREACH RD GENERATE f1, ... , fn; 
 /* Repeat rest of pattern for each level of advice  */ 

   XC = RC; 

   XA = RA; 

The template is illustrated in Figure 6. As an example, consider generating subscriber 
cities. Each city is generated along with all of the advice and meta advice. 

3.1.3 SPLIT and SAMPLE  
A SPLIT  transformation partitions a relation into n relations for parallel processing. The 
split is based on conditions c1 ..., cn where each condition is a predicate involving field 
values. 

   SPLIT R INTO X IF c1, ..., Y IF cn; 

A SAMPLE transformation chooses a random sampling of a relation. It is used to estimate 
results. The sample_size is a percentage of the size of the relation, e.g., 0.01 would 
represent 1%. 

   X = SAMPLE R sample_size; 

The aspect-oriented versions of these transformations are similar to FILTER AO. They 
apply the transformation to the data and then remove extraneous data cuts and advice, or 
alternatively, leave the cuts and advice unchanged since extraneous cuts and advice are 
harmless. We give the aspect-oriented split, SPLIT AO, template below. 

   SPLIT RD INTO XD IF c1, ..., YD IF cn; 

   
   /* The rest is optional */ 

   B = JOIN XD BY XD.id, RC BY id; 

   C = JOIN B BY ref, RA BY ref; 

   XC = FOREACH C GENERATE C.id,  C.ref; 

   XA = FOREACH C GENERATE C.ref,  C.advice; 
... 

   D = JOIN YD BY YD.id, RC BY id; 

   E = JOIN E BY ref, RA BY ref; 

   YC = FOREACH C GENERATE C.id,  C.ref; 

   YA = FOREACH C GENERATE C.ref,  C.advice; 
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3.1.4 LOAD, STORE, and DUMP 
The LOAD transformation loads a relation from disk into memory, STORE stores an in-
memory relation to disk, and DUMP displays a relation. The aspect-oriented versions of 
these transformations must be trivially augmented to deal with three relations (the data, 
the data cuts, and the advice) for each level of metadata rather than a single relation. 

3.2  Multiple Tuple 

Multiple tuple transformations involve more than one tuple and generally involve an 
advice-specific operation. 

3.2.1 Joins 
Pig Latin has several kinds of joins: cross, replicated, inner, outer, skewed, and merge. 
Additionally Pig Latin has a COGROUP transformation that groups tuples that would join. 
Semantically all are variants of an equi-join, where two tables are joined on the values of 
one or more fields being equivalent. 

   X = JOIN R BY fR,  S BY fS; 

Advice constrains the join. If two tuples potentially join, their advice also needs to 
“join.” For instance two tuples only join when their temporal advice overlaps (i.e., the 
tuples exist at the same time). The following template for an aspect-oriented join, JOIN AO, 
regulates the join with advice. 

   /* Merge the data with the cuts and advice */ 

   B = JOIN RD BY RD.id, RC BY id; 

   C = JOIN B BY ref, RA BY ref; 

   D = JOIN SD BY SD.id, SC BY id; 

   E = JOIN D BY ref, SA BY ref; 
 
 /* For each additional level of advice, join cuts and advice */ 
 ... 
 
   /* Join on the data conditions */ 

   F = JOIN C BY fR, D BY fS; 
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Figure 5 The alternative pattern for FILTER AO 
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Figure 6 The pattern for GENERATEAO 
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 /* Check the advice, for each level, repeat the fo llowing */ 

   G = STREAM B THROUGH ADVICE-JOIN; 
 
   /* Generate the data, create a new cut */ 

   XD = FOREACH G GENERATE all data fields, G.id; 
 
   /* Generate the data cuts */ 

   XC = FOREACH G GENERATE G.id,  G.ref; 

 
  /* Generate the advice */  
  XA = FOREACH G GENERATE G.ref, G.advice; 
 

The key transformation is streaming the data through an advice-specific join (ADVICE-

JOIN). This user-defined function computes the “join” of the advice within a tuple using 
an advice-specific technique. Example advice-specific joins are listed below. These 
examples assume that the last four (or two) fields in a tuple are the advice pairs to be 
tested, and that the data, id's, and ref's are called “rest”. 

• Temporal advice – Computes the temporal join for pairs of time periods, i.e., the 
time when the periods overlap. 
    temporal-join((rest, t, u, v, w)) =  
                                 {(rest, max(t, v, ), min(u, w))} 

• Lineage advice – Lineage x always joins with lineage y and manufactures new 
advice that lists both tuples as the source. 
    lineage-join((rest, x,  y)) = {(rest, x), (rest, y))  

• Security advice – A partial order join is performed by keeping the most private 
group.  
    security-join((rest, x, y)) = {(rest, lca(x, y))} 

Finally, the ADVICE-JOIN  manufactures a new data cut identifier and advice reference. 
As an example, consider the JOIN  of Subscribers  with Personal Info . The 

result is shown in Table 7. The data relation contains three tuples. Note that the data cuts 
identifiers and advice references are composed values, manufactured from the underlying 
identifiers or references, respectively, they indicate which tuples were joined to produce a 
tuple in the join result. In this example, no tuples were removed from the join due to 
incompatible or mismatching advice, but some of the advice has been trimmed, for 
instance the security advice joins only at the level of the DBA. The meta-metadata 
(Temporal Meta Advice ) joins as is since every tuple overlaps the default interval 
“2007-now.” 

3.2.2 GROUP 
Grouping is important when computing aggregates. Pig Latin has a GROUP transformation 
that groups tuples on fields, f1, ... , fn.  

   X = GROUP R USING f1, ... , fn; 
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Advice constrains the grouping. Two tuples potentially group only if their advice also 
groups. For instance two tuples are in the same group only when their temporal advice 
overlaps (i.e., the tuples exist at the same time). The following template regulates the 
grouping. 

 

   /* Merge the data with the cuts and advice */ 

   B = JOIN RD BY RD.id, RC BY id; 

   C = JOIN B BY ref, RA BY ref; 
 
 /* Repeat merging for each level of advice */ 
 ... 
 
   /* Group on the data values */ 

   D = GROUP C USING f1, ... , fn; 
 
   /* Stream through aspect-specific grouping */ 

   E  = STREAM D THROUGH ADVICE-GROUP; 
 
 /* Flatten it and regroup using the data and new i d */ 

   F  = FLATTEN E; 

   XD  = GROUP F USING f1, ... , fn, id; 
 
   /* Generate the data cuts */ 

   XC = FOREACH F GENERATE F.id,  F.ref; 

 
   /* Generate the advice */  
   XA = FOREACH F GENERATE F.ref, F.advice; 

The template for a GROUP transformation is sketched in Figure 8. It uses an advice-
specific operator, ADVICE-GROUP, to compute the groups for the advice.  The semantics of 
this operator depends on the kind of advice. The input to this operator is a set of advice 
values (the advice for all of the group members). The output is a refined set of advice. 

• Temporal advice – Compute membership constant periods, that is those intervals 
of time for which group membership does not change. 
    temporal-group(T)  
      = { (t, u)  | (t, _)∈T ∧ (_, u)∈T ∧  
               ¬(∃(w, _)∈T ∨  ∃( _, w)∈T [t < w < u]) } 

• Lineage advice – Lineage does not change the grouping. 
    lineage-group(T) = noop 

• Security advice – Each level in the hierarchy is its own group.  
    security-group(T) = T 

Data  Data Cuts 
 

Security Advice 
 Lineage 

Advice 
 Metadata 

Data Cuts 
 Temporal Meta 

Advice 
 Name  …  ID  RF ID  Per Sec MetaID  Per Lin  RF Me taID  MetaId Start End 
(Maya, … 1)  (1.5, A.E)  (A.E, DBA, I)  (A.E, {1,5} )  (II, X)  (X, 2007, 2008) 
(Jose, … 2)  (2.6, B.F)  (B.F, DBA,II)  (B.F, {2,6} )  (III, Y)  (Y, 2009, now) 
(Knut, … 3)  (2.6, C.F)  (C.F, DBA, III)  (C.F, {3, 6})  (I, Z)  (Z, 2007, now) 

  (3.7, D.G)  (D.G, DBA, I)  (D.G, {3,7})     
 

Table 7 Subscribers joined with Personal Info 
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As an example, consider grouping the Subscribers  relation using the City  field. 

To simplify this example we assume a single kind of advice: security advice. The result is 
shown in Table 9. Each city will end up in a separate group. But because the cities have 
different advice, they will be further split into more groups. As part of the aspect-specific 
grouping, new advice corresponding to each group is manufactured.  

3.2.3 DISTINCT 
The DISTINCT  transformation eliminates duplicate tuples from a relation. 

   X = DISTINCT R; 

For aspect-oriented distinct, DISTINCT AO, when duplicates of a tuple are eliminated, the 
data cuts to the duplicates must be changed to attach to the tuple that was not eliminated. 
The duplicate elimination does not coalesce, that is, it does not eliminate or reduce 
overlapping or redundant advice. The following template makes this change. 

 

Cities  
Data 
Cuts 

 
Security Advice 

 
Lineage 
Advice 

 Metadata 
Data 
Cuts 

 
Temporal Meta 

Advice 

 City   ID  RF ID 
 

Per Sec MetaID 
 

Per Lin 
 RF 

MetaID 
 

MetaId Start End 

(Logan, 1)  (1, A)  (A, Paid, I)  (A, 1)  (II, X)  (X, 2007, 2008) 
(Ogden, 3)  (1, B)  (B, Paid,II)  (B, 2)  (III, Y)  (Y, 2009, now) 

  (1, C)  (C, Lapsed, III)  (C, 3)  (I, Z)  (Z, 2007, now) 
  (3, D)  (D, Lapsed, I)  (D, 4)     

 

Table 8 Distinct cities 

 

JOIN …

XD

RD

XC

RC

XA

RA

JOIN …

B

STREAM …

R

X

FOREACH …

C

FOREACH …

SD SC SAS

JOIN …
D

E

JOIN …

G

JOIN …

FOREACH …

F

JOIN …

XD

RD

XC

RC

XA

RA

JOIN …

B

STREAM …

R

X

FOREACH …

C

FOREACH …

SD SC SAS

JOIN …
D

E

JOIN …

G

JOIN …

FOREACH …

F

 

Figure 7 The pattern for JOIN AO 

 
XD

RD

XC

RC

XA

RA

JOIN …

B

GROUP …

R

X

FOREACH …
FOREACH …

C

JOIN …

D

E

STREAM …

FLATTEN …

G

GROUP …

XD

RD

XC

RC

XA

RA

JOIN …

B

GROUP …

R

X

FOREACH …
FOREACH …

C

JOIN …

D

E

STREAM …

FLATTEN …

G

GROUP …

 

Figure 8 The template for GROUPAO 
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   /* Merge the data with the data cuts  */ 

   C = JOIN RC BY id, RD BY id; 
 /* Group the duplicates */ 

   G = GROUP C on all data fields; 
   /* Generate the data with a minimum cut ID */ 

   XD = FOREACH G GENERATE data fields, min( RD.id); 
   /* Generate the data cuts */ 

   XC = FOREACH G GENERATE min( RD.id), RC.ref;  
  /* Advice is not changed */  
   XA = RA; 

The template is illustrated in Figure 9. 
As an example, consider computing distinct cities. First the subscriber names are 

generated yielding three tuples. Next the DISTINCT  transformation is applied, yielding two 
tuples in the result (Logan and Ogden). The advice for the Logan tuples remains as three 
distinct perspectives. The result is shown in Table 8. 

3.2.4 UNION 
In a UNION transformation, the tuples in each relation are put into a single bag. The union 
does not eliminate duplicates. 

    X = UNION R, S; 

The aspect-oriented union, UNIONAO, similarly combines the advice and data cuts 
(assuming that the ids and references are disjoint).   

   XD = UNION RD, SD; 

 /* Repeat for each level of advice */ 

   XC = UNION RC, SC; 

   XA = UNION RA, SA; 

3.3 The Example Revisited 

We return to the example query of Section 2.1. Assume that we have a single security 
aspect. The aspect-oriented version of the program is given below. 

  A = LOAD AO 'subscribers' USING PigStorage()  
          AS (name: chararray, city: chararray, amo unt:int, id:int); 

 
XD

RD

XC

RC

XA

RA

JOIN …

C

GROUP …

R

X

FOREACH …

G

FOREACH …

XD

RD

XC

RC

XA

RA

JOIN …

C

GROUP …

R

X

FOREACH …

G

FOREACH …

 

Figure 9 The pattern for DISTINCT AO 
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  B = GROUP AO A BY dept; 
  C = FOREACH B GENERATE AO dept, COUNT(B.name); 
  DUMPAO C; 

The aspect-oriented behavior is woven into the program using the templates described 
in this section, yielding the following Pig Latin program. 

  A_D = LOAD 'subscribers.data' USING PigStorage() 
          AS (name: chararray, city: chararray,amou nt:int, id:chararray); 
  A_C = LOAD 'subscribers.cuts' USING PigStorage()  
          AS (id: chararray, ref: chararray); 
  A_A = LOAD 'subscribers.advice' USING PigStorage( )  
          AS (ref: chararray, sec: int); 
 
  /* Merge the data with the cuts and advice */ 
  B = JOIN A_D BY id, A_C BY id; 
  C = JOIN B BY ref, A_A BY ref; 
  /* Group on the data values */ 
  D = GROUP C USING dept; 
  /* Stream through aspect-specific grouping */ 
  E   = STREAM D THROUGH SECURITY-GROUP; 
  /* Flatten it and regroup using the data and new id */ 
   F  = FLATTEN E; 
   B_D  = GROUP F USING dept, id; 
  /* Generate the data cuts */ 
  B_C  = FOREACH F GENERATE id,  ref; 
  /* Generate the advice */  
  B_A  = FOREACH F GENERATE ref, sec; 
  /* Generate the result */  
  C_D =  FOREACH B_D GENERATE dept, COUNT(B_D.name); 
  C_C = B_C; 
  C_A = B_A; 
  DUMP C_D; 

3.4 Program Aspects 

A Pig Latin program can also be aspected. A program aspect represents a constraint on the 
relations that are evaluated.  Suppose that a program involves a relation, [RD, RC, RA], and 
is aspected by a perspective consisting solely of advice, PA. Then the program aspect 
transformation constrains RD to tuples that have advice consistent with the perspective 
prior to evaluating the program. It does so as follows. 

   /* First relate all of the advice, CROSS is Cartesi an product. */ 

   B = CROSS RA, PA; 
   /* Generate new advice */ 

   XA = STREAM B THROUGH ADVICE-PROGRAM-ASPECT; 
   /* Use new advice to remove extraneous data cuts */  

   C = COGROUP RC BY ref, XA BY ref; 

   XC = FOREACH C GENERATE C.id,  C.ref; 

Subscribers  Data Cuts  Security Advice  
(Logan, 11, {(Maya, Logan, $20, 1), 
             (Jose, Logan, $15, 2)}) 

 (11, J) 
 

(J, Paid) 
 

(Logan, 12, {(Jose, Logan, $15, 2)})  (12, H)  (H, Lapsed)  
(Ogden, 13, {(Knut, Ogden, $20, 3)})  (13, I)  (I, Paid)  

      

Table 9 Grouped subscribers 
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   /* Use the new data cuts to remove extraneous tuple s */ 

   D = COGROUP RD BY id, XC BY id; 

   XD = FOREACH D GENERATE D.data,  D.id; 
 

Each advice tuple is passed through the advice-specific stream, which leaves the tuple 
unchanged, trims the tuple, or removes it. 

3.5 Complexity Analysis 

The increased modeling power of aspect-oriented data comes with an increased cost. In 
this section we analyze the worst-case time complexity, assuming that all of the aspect-
oriented transformations are implemented in Pig Latin (some advice-specific behaviors 
are implemented as user-defined functions). Let D be the size of each data relation, C be 
the size of a data cuts relation, and A be the size of an advice relation. Typically A will be 
much smaller than D, and if there is a lot of default advice, C will also be much smaller 
than D. Finally, let z be the number of different kinds of advice, e.g., z is three for the 
examples in this paper, and let k be the number of levels of advice, e.g., in our examples, k 
is 2. We assume that all binary operations, i.e., the various kinds of join, cost O(n∙m) 
where n and m are the size of the operands, and unary operations, i.e., filtering, sampling, 
generating, and grouping, cost O(n). Though this assumption overestimates the join cost, 
which in practice (e.g, in a good hash join) can be nearly linear, the assumption is 
appropriate for our complexity analysis. 

To determine the cost of each aspect-oriented transformation, we summed the cost of 
every Pig Latin transformation in a template. For example a FILTER AO, costs 1 FILTER  + 
k*(2 JOINs and 2 GENERATEs), which yields a total cost of O(D) + O(kDC + kzAC) + O(kC 
+ kzA), or O(kDC + kzAC) by simplifying the equation. The analysis states that the cost of 
FILTER AO is dominated by the cost of the k*2 JOINs, which concurs with the general rule of 
thumb, that the cost of joins dominates the query evaluation cost.  

The analysis is summarized in Table 10. Most of the operations include only the 
additional cost of processing the cuts and advice, but five operations are much more 
expensive: FILTER AO, JOIN AO, GROUPAO, SPLIT AO, and SAMPLEAO. We consider each in turn. 
FILTER AO, increases the cost by eliminating extraneous cuts and advice (those that have 
been filtered from the relation). But as we pointed out in Section 3.1.1. the extraneous cuts 
and advice is harmless and does not need to be removed (other than for consistency), 
lowering the cost to O(D). A similar speedup applies to SPLIT AO and SAMPLEAO. JOIN AO, is 
expensive because the data has to be joined to the advice and the data cuts for each join. 
This adds a factor of O(kDC + kzAC) to the cost. This cost can be amortized over several 
joins by performing the join once and keeping the joined data in subsequent JOIN AO 
transformations. Finally GROUPAO is inherently more expensive than GROUP, because data 
must be grouped by both data and metadata, increasing both the number of groups and the 
cost of computing each group. 
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4 Related Work 

There is a little previous research on support for manifold kinds of metadata in database 
management systems. Most closely related to this paper is our work on aspect-oriented 
relational algebra [10],[11], and query languages for metadata annotating XML  [8],[16]. 
This paper in contrast focuses on Pig Latin, though we take the same approach as our 
relational algebra research by using data cuts and advice relations and the modeling of the 
many operations that relational and Pig Latin share, e.g., joins, selection, and projection. 
This paper makes three novel contributions. First we apply AOP to Pig Latin 
transformations that differ from relational algebra transformations, such as grouping, 
distinct, and sample, as well as to those that are familiar relational algebraic 
transformations. Second we show how to model meta-metadata as advice tagging advice. 

The database research community has researched models and support for specific kinds 
of metadata, or in our terminology, specific kinds of aspects. One of the most important 
and most widely researched kinds is temporal. Temporal extensions of every data model 
exist, for instance, relational [25], object-oriented [26], and XML [12]. This paper 
generalizes the work in relational temporal databases by proposing an infrastructure that 
supports many kinds of advice, not just temporal advice. More specifically we extend 
tuple-timestamped models [15], whereby the temporal metadata modifies the entire tuple. 
Other tuple-level, relational model extensions to support security, privacy, probabilities, 
uncertainty, and reliability have been researched, but no general framework or 
infrastructure exists which can support all the disparate varieties.  

There are several systems that have aspect-like support for combining different kinds 
of metadata. Mihaila et al. suggest annotating data with quality and reliability metadata 
and discuss how to query the data and metadata in combination [20]. The SPARCE 
system wraps or super-imposes a data model with a layer of metadata [21]. The metadata 
is active during queries to direct and constrain the search for desired information. Systems 
that provide mappings between metadata (schema) models are also becoming popular 
[2],[19]. Our approach differs from these systems by focusing on Pig Latin to support 

Transform  Pig 
Latin  

Aspect-oriented  
Pig Latin 

FILTER  O(D) O(kDC + kzAC) 
GENERATE O(D) O(D + kA + kC) 
DISTINCT O(D) O(D + C) 
JOIN O(D2) O(D2 + kDC + kzAC) 
GROUP O(D) O(kDC + kzAC) 
UNION O(D2) O(D2 +  kC2 + kzA2) 
SPLIT/SAMPLE O(D) O(kDC + kzAC) 
LOAD/STORE/DUMP O(D) O(D + kC + kzA) 
PROGRAM ASPECTS - O(kDC + kzAC) 

Table 10 Complexity Analysis 
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AOP, and by building a framework whereby the behavior of individual data aspects can 
be specified as “plug-in” components. 

The information retrieval community has been very active in researching descriptive 
metadata, in particular metadata that is used to classify knowledge [28]. The Dublin Core 
is a commonly used classification standard [7]. Commercial and research systems [1] to 
manage (descriptive) metadata collections have been developed. Methods to automatically 
extract content-related metadata have also been researched [14],[18]. The focus of the 
information retrieval research is on how to best use, manage, and collect metadata to 
describe data to improve search [13]. In contrast, our focus is on modeling data aspects 
which impose a semantics on the use of the data, i.e., they go beyond the simple, 
descriptive tagging of data. 

Finally, our goal in this paper, consistent with AOP and unlike many of the above 
approaches, is to maximally reuse existing languages and systems. Hence we focus on 
using Pig Latin itself to support aspect-oriented data by weaving the support for cross-
cutting concerns, expressed in Pig Latin, into Pig Latin programs. 

5 Conclusions 

This paper proposes adapting a popular software engineering design technique to the 
management of data in a cloud computing context. Current cloud computing systems do a 
poor job of evaluating cross-cutting concerns. Data has a wide variety of cross-cutting 
concerns: time, security, reliability, privacy, quality, summaries, rankings, and 
uncertainty. In this paper we adapted techniques from aspect-oriented programming 
(AOP) to data. A data aspect combines advice (metadata and special semantics) with a 
data cut (that pinpoints the data which the advice modifies). In our approach, the advice is 
woven around the data enriching its meaning and use. Though specific data aspects have 
individually been studied in detail, e.g., as a temporal database, data models and query 
languages that combine many, disparate aspects have received little attention.  

This paper presents a design for aspect-oriented Pig Latin. Pig Latin is a dataflow 
language for analyzing data in the cloud. We proposed annotating or tagging Pig data 
using data aspects. A data aspect binds advice (metadata) to data. The advice also has 
semantics that must be observed when the data is used in a query. We showed how to 
weave Pig Latin into a Pig Latin program to support cross-cutting concern data concerns. 
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