Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

The Design of Aspect-Oriented Pig Latin

Curtis Dyreson and Omar U. Florez

Utah State University
curtis.dyreson@usu.edu, omar.florez@aggiemail.dsu.e

Abstract. In this paper we apply the aspect-oriented prograng (AOP) paradigm
to Pig Latin, a dataflow language for cloud compgtiMissing from Pig Latin is
support for cross-cutting data concerns such asioreng, privacy, and reliability.
AOP techniques can be used to weave metadata amigndata. The metadata
imbues the data with additional semantics that rhastbserved in the evaluation of
Pig Latin programs. In this paper we show to modtig Latin to process data
woven together with metadata. The data weaver lgyer that maps a Pig Latin
program to an augmented Pig Latin program usingLBtin templates or patterns.
We also show how to model additional levels of adyi.e., meta-metadata.

1 Introduction

No matter whether data is stored in a databastfilta spreadsheet, or as persistent
objects, data has cross-cutting concernsrdss-cutting data concern is a data need that
is universal (potentially applicable to an entire database) aitdspread (can be used to
enhance manydifferent databases). Many data collections havessccutting data
concerns, and as a collection evolves, new concerayg arise. For instance, a new
privacy policy is implemented to hide certain imfa@tion in a Facebook page.phivacy
cross-cutting concern could be added to the reteFanebook data to hide it from the
general public. Datauality [3],[17] provenance [5],[6] accuracy and lineage [4],[29],
time, security, reliability and performance are potential cross-cutting concerns. Each
concern may have an individual and distinct sensanti

In spite of many years of research on individuadcsons, e.g., 30+ years of research in
temporal databases, research and industrial databasagement systems (DBMSs) lack
support for cross-cutting data concerns (though esddBMSs support individual
concerns, e.g., security). DBMSs are large, comgjsxems and not designed to be easily
configured or modified to support a cross-cuttimpaern. Developers currently have to
rely on ad-hoc techniques to add concernsdata collection.

To better support cross-cutting data concerns aamgwoach is needed, one that looks
to fields outside of databases for useful techriqaed insights.Aspect-oriented
programming (AOP) provides a framework that can be adaptedutoneeds. AOP was
developed to add cross-cutting concerns to a pnogréthout having to reprogram. In

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

Data
change no change
(noop)
change temporal lineage

o) privacy provenance
&) security probabilistic
= ,
o no change vacuuming authored by
< (noop) profiling language

Figure 1 The space of cross-cutting concerns

AOP, anaspect weaver injects code, calle@dvice, into a program at specified places,
known aspoint cuts, to add new functionality to an existing program.

Previously we employed aspect-oriented techniquesréateaspect-oriented data
(AOD) for data stored in the relational model [{D]]. AOD “tags” data with metadata
from a cross-cutting data concern to creatdata aspect. The aspect becomexctive
whenever the data is used.data aspect weaver weaves behavior for the cross-cutting
concern into the evaluation of a query, constrainpbject management operation. AOD
can successfully model the kinds of cross-cuttimmpcerns already researched in
databases (e.g., time, provenance) and new Kkindlsyetoresearched. For instance,
versioned security where a magazine subscriber has access to artitldse time the
subscription was current even after the subscriphias ended. Versioned security can be
modeled as a temporal aspect tagging a securigcagp our framework, i.e., as meta-
metadata. Recursively higher levels of advice (metadata) can also be modeled. We
showed how to weave behavior into the relationgélata [11]. There has also been other
research in using AOP in databases. Research téresadd using aspect-oriented
techniques to program databases [24], using aioeitdatabase to support AOP [23],
and applying AOP to XML schema [9].

Figure 1 gives a broad classification of the spafceross-cuttingdata concerns that
can be addressed using an AOD approach. In geree@dta aspect has access to two
things: data and advice, which is the metadata that annotates the datdatda aspect
becomesactive when the data is used in an operation in the streethe aspect can
change (insert, update, or modify) the data meke no change. The aspect could also
change the advice. In generahange or no change are the only possible data effects
(ignoring side effects like computation time inved). In Figure 1 the concerns are
partitioned into four categories based on whether advice and/or data changes. For
example, a temporal cross-cutting data concerntraris new timestamps during some
guery operations, such as a join operation. The teastamps become advice for some
data, e.g., a tuple in the join result. This tiraegds may (logically) delete data since the
constructed times may be shorter. As a second derarognsider data lineage. Lineage
computes as metadata references to all of thetdatecontributes to a particular result,
that is, it constructs advice for data, but thestarcted advice does not change the data.
As a third example, a profiling cross-cutting camcgenerates statistics (new data) about
the data usage, but the advice itself does notgghan

In this paper we propose adapting AOP to Pig LE&R] to support cross-cutting data
concerns. Pig Latin is a dataflow language anddccimamputing platform for the analysis

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

of massive datasets. Developed by researchershetoy ®ig Latin is one of the first, and
is (in our opinion) the best, of the emerging claamnputing languages for data analysis.
Though relatively new, Pig Latin already has arggraser and development commuhity
This paper is organized as follows. The next sactlevelops a motivating example.
After that, data aspects are developed in greatsild The paper then presents aspect-
oriented Pig Latin. The final sections cover radatork and summarize the paper.

2 MOTIVATION

Assume that Magazine.com stores data about itscebbss in a collection of Pig
relations. A Pig relation is a bag of tuples, samito a table in an SQL database. Each
tuple is an ordered list of fields. Each field ipiace of data. Unlike an SQL table, not all
tuples have to have the same number of fields. Mane Pig relations can have values
that are themselves tuples, bags, or maps, sorgethat is not allowed in a relational
database. A portion of the data, tBabscriber relation, is shown in Table 1. Each
tuple inSubscriber records, in order, a name, city, and subscripgimount.

21 PiglLatin

Magazine.com would like to count the subscribers gity. The following Pig Latin
program computes the desired count.
A = LOAD 'subscribers' USING PigStorage()
AS (name: chararray, city: chararray, amoun t:int);
B = GROUP A BY city;
C = FOREACH B GENERATE city, COUNT(B.name);
DUMP C;

The program has four statements. The first statehoads the data, and furthermore
gives a name and a type to each field within aetupl the data. The statement also
establishes the data nodeA grouping transformation is applied to the datmodeA to
produce node. The data is grouped into bags by value as shawrable 2. The data in
nodes is then processed to generate the name and aoueach city as shown in Table 3.
The final statemenbump displays the data accumulated at node

This program has a very simple dataflow, with ottiyee nodes. To evaluate the
program, Pig Latin first constructs a representatibthe dataflow as illustrated in Figure
2. Next it applies query optimization rules to optie the data flow (for instance the
GENERATHransformation could be combined with teeourtransformation to generate
only the needed fields while grouping). Only whée bumpstatement is parsed is the

! http://hadoop.apache.org/pig/

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

GROUPA ...
FOREACHB ...

| Subscriber |
(Maya, Logan, $20)
(Jose, Logan, $15)
(Knut, Ogden, $20)

Table 1 Some data about subscribersto

Magazine.com Figure 2 Dataflow in the ssimple program
| B |
(Logan, {(Maya, Logan, $20),
(Jose, Logan, $15)}) (Logan, 2)
(Ogden, {(Knut, Ogden, $20)}) (Ogden, 1)
Table 2 Subscribers grouped by city Table 3 The count of subscribers

optimized dataflow program evaluated using Haddbat is, the program is transformed
to map-reduce constructs and executed in parallel.

On-line magazines earn revenue by restricting canti@ paid subscribersSecurity
enforces the restriction. For data, each subscsheuld be able to see their own data, but
not that of others. Subscribers complain that aedr subscription ends, they are no
longer able to see the content to which they onbsaibed, but they should be able to do
so0. Magazine.com decides to support both secunity \&rsioned security, whereby
subscribers still have access to content as ofitiee when they subscribed. To help the
programmers implement the system, Magazine.com ddsides that it is important to
supportlineage in query evaluation. Lineage keeps track of whiatts were used to
produce a result, thereby helping programmers wwhaled how the query produced a
particular result.

To accommodate the new requirements, all crosgagutbncerns, the designers need
to add new data and functionality to their existdajabase and its applications. Ideally,
the designers will be able to add without changidige of existing Pig Latin programs.

2.2 Asgpect-oriented Pig Latin Data

Pig Latin is a “NoSQL” language. A NoSQL languagelaces SQL with a language that
is better suited to programmers. Pig Latin is mameenable than declarative languages,
like SQL, to aspect-oriented techniques. A Pigihgtiogram is a sequence of statements.
Each statement represents a transformation of satae

Pig Latin does not support cross-cutting data concerns. Users must resoadtboc
techniques to implement, for instance, a tempoeshatics for data. Snodgrass has
pointed out the perils of relying on user goodHaid correctly implement temporal
semantics [27]. Usually Pig Latin programmers widit know which cross-cutting data
concerns are present nor know how to program thrastics of an individual concern.

Pig Latin lacks many of the features found in otti@tabase languages. Pig Latin is a
schema-less language. In the relational model &, data is rigidly described by a fixed
schema, but in Pig Latin, users load data from fé&s or back-end databases by
sketching the types and number of each column ri@laion in a query. Pig Latin also
lacks data modification operators, the data isufassl to be) created and maintained by
other processes. Not surprisingly, Pig Latin alas ho data constraint specifications. All

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

’ Data . . Lineage Metadata Temporal Meta
Subscribers Cuts Security Advice Advi%e Data Cuts pAdvice
Name City Amt ID RF ID Per|Sed MetalD Per L in RF MetalD Metald Start End
(Maya, Logan, $20, 1) (1, A) (A, Paid, 1) (A {1 D) (I, X) (X, 2007, 2008)
(Jose, Logan, $15, 2) (2, B) (B, Paid,II) B, {2) m,y) (Y, 2009, now)
(Knut, Ogden, $20, 3) (2,C) (C, Lapsed, IlI) (C ,{3) (,2) (Z, 2007, now)

(3,D) (D, Lapsed, I) D, {3h)
Table 4 Aspected subscribers

constraints are maintained by other processesliyitlae Pig Latin data model supports
sets and bags, as well as tuples; it is a non+iwstinal form (1NF) data model. So while
sharing some commonalities with other databaseygaeguages, Pig Latin is different,
over and above the cloud computing framework (Hadltlwat supports its back-end.

In an aspect-oriented approach, the database @esitgag” data in the database with
advice, creating aspects. The tagging could bifarent levels, i.e., in the Pig Latin data
model, the tagged data could be atribute value, atuple, or arelation. We focus on
tuple- andrelation-tagging in this paper. The advice that tags a tuple iarassl to pertain
to all of the attribute values within that tuplegdafor a relation, the advice applies to all of
the tuples in the relation. Relation-tagging isfukéor establishing default advice for
each tuple in the relation.

Though aspects are developed independently, maredhe kind of advice can tag a
tuple or relation, for instance a tuple could bgged with both lineage and security
advice. The advice can be combined into a sipgtepective [8], or remain independent.
Finally, since the advice is data, it too can beisetl by meta-metadata. That is, metadata
is to data as meta-metadata to metadata.

Several data cuts are concretely represented ite Fabnd Table 5 which extend and
refine the subscriber database example of the quievsection. We assume that each data
tuple has anID ” to allow it to be identified. This is the finaleld in each data tuple. For
instance Maya's subscription is identifiediadNext, each advice tuple is prefixed with a
“perspective id” Per), which is the first field in each advice tupleheTfirst tuple of
Security Advice has aPer of A. A data cut is a pairing of a tuple id with an mav
id. Table 4 shows the aspect&libscribers relation. TheData Cuts relation
weaves advice to data identified by tRE column. This tagging scheme is repeated for
the meta-metadatal ¢mporal Meta Advice and Metadata Data Cuts). Each
subscriber is tagged by a security aspect thatrdecthe security on the tuple and a
lineage aspect that denotes how the tuple wasrcated. Initially, the lineage is just the
identifier of the tuple itself. The security igartial order from the lowest levelRdid
and Lapsed) to the top level PBA. Only paid subscribers have access to the cantent
The meta-metadata records when the security adk/imérrent. Jose was a paid subscriber
from 2007 to 2008 at which time his subscriptiopsked. If the data is rolled back to its
state current in 2007, Jose should have acces$mtoantent of the site. Said differently,
Jose paid for the 2007 to 2008 content and thexesbhould have access to that data by
setting his content perspective to some time ihridwage. An advice tuple shaded in grey
denotes default advice, that is, data advised katioe-tagging. The default temporal
advice starts in 2007 when the site began.

Table 5 extends the database with an aspdtesbnal Info relation that records
personal information about each subscriber. Byudetaly the DBA can access this data.

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

Security Lineage

Personal Info Datp Cuts Advice Advice
(Maya, maya@aol.com, 5) (5, E) (E, DBA) (E. {5}
(Jose, jose@foo.com, 6) 6, F) (F, DBA) (F, {6})
(Knut, knut@aol.com, 7) (7, G) (G, DBA) (G.{7h

Table 5 Aspected personal information about subscribers

2.3 Weaving Behavior into Pig Latin Programs

An advice’s behavior has to be woven into the eatébn of a Pig Latin program. The
weaving technique that we adapt is to modify eaahsformation in a dataflow program
is depicted in Figure 3. In Figure 3(a), the typitataflow is depicted, data at a nddés
transformed to that at nodé Figure 3(b) shows a Pig Latpattern or template that will
replace the transformation of Figure 3(a). In tepexted case, the relation at node R
consists of three components: a data relatn,an advice relatiorRy, and a data cuts
relation, R.. Without loss of generality we focus on a singiedkof advice, more
generally there would be several advice relatidBach of these relations must be
transformed to create the three components ofdbeltrdata nodexp, Xa, and relation,
Xc. In the next section we develop a specific tengplftr each kind of Pig Latin
transformation. But in general, the weaving is BPain program modification whereby
each statement in a program is replaced by a seqdeof statements constructed by
instantiating a template for the transformation.

This strategy can be extended to additional lewéladvice, e.g., meta-metadata. The
pattern is repeatedly applied for each level akheildeveloped in the next section.

3 Aspect-Oriented Pig Latin

This section describes modifications of Pig Lainstpport aspect-oriented data. Recall
that each kind of aspect (e.g., security) enfocegmantics on the use of the data. All
uses must obey that semantics. We model the buR{gtatin transformations, showing
how each is redefined to support data aspects. Eaosformation is redefined using
(non-aspect-oriented) Pig Latin to illustrate tRag Latin itself can be used to become
aspect-oriented.

Each of the modifications is described in terma ghttern or template. The template is
applied to rewrite the corresponding transformatioa Pig Latin program.

We consider two broad categories of Pig Latin ti@msations: single vs. multiple
tuple transformations. We first model single tugpbnsformations which involve only one
tuple at a time and are generally simpler thamtb#iple tuple case.

3.1 SingleTuple

The single tuple transformations aneTER, GENERATESPLIT , SAMMPLELOAD DUMP and
STORE

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

FLTER.. A A x A A A T FOREWCH .| FOREACH
FILTER ...
. ‘R N
a) Unaspected Pig Latin b) Aspected Pig Latin \\ _____________________________ !
Figure 3 Weaving by template instantiation Figure 4 The pattern for FILTER a0
! Data .] Lineage Metadata Temporal Meta
Subscribers Cuts Security Advice Advice Data Cuts Advice

Name City Amt ID RF ID Per|Sed MetalD Per L in RF MetalD Metald Start End
(Maya, Logan, $20, 1) 1, A) (A, Paid, 1) (A {1 D) (,2) (2, 2007, now)
(Knut, Ogden, $20, 3) (3.D) (D, Lapsed, 1) (D, {3}

Table 6 Subscribersthat paid $20 or more for their subscription

311 FILTER
TheFILTER transformation selects tuples from a data nodentieeet some conditiof®.

X=FILTER Ron P;

As theFILTER may remove some tuples, the data cuts and adi@meds besynchronized
with the data, removing extraneous advice, follayithe FILTER. The template for
FILTER 0 iS given below, with comments enclosed withimv'

[* Filter the data */
Xp=FILTER Rpon P;

/* The code below is optional, repeated for each le vel of advice */
/* Remove extraneous cuts (cuts for tuples that wer e removed by
filtering), remove by computing all the cuts st ill needed. */

C=JOIN RcBYid, XpBYid;
Xc = FOREACH C GENERATE C.id , Curef;

/* Remove extraneous advice */
A=JOIN RjBY ref, Xc BY ref;
Xa = FOREACH A GENERATE Avref, A.data;

Figure 4 illustrates the basic pattern for tierer transformation. The pattern to the
right of theFILTER transformation should be repeated for each lefeddvice. As an
example, consider a query to filter subscribersWwe$20. The result is shown in Table 6.
Maya and Knut are filtered, and synchronized wii advice to retain only their data cuts
and advice tuples. Alternatively, the extraneougalis harmless (except for occupying
space) and can be left in place leading to therdteve, cheaper plan shown in Figure 5.

3.12 GENERATE
The GENERATHransformation projects only specified fields.... ,f,, into the result.

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

X=FOREACH RGENERATEf;, ... , fy
As all the tuples are retained, the data cuts @wite are unchanged, and so the template
for GENERATR is simple.

/* GENERATE the data */

Xp = FOREACH Rp GENERATEf;, ... , fy
/* Repeat rest of pattern for each level of advice */

Xc= Rci
Xa= Ra
The template is illustrated in Figure 6. As an egbanconsider generating subscriber
cities. Each city is generated along with all af #vice and meta advice.

313 SPLIT and SAMPLE

A spLIT transformation partitions a relation intorelations for parallel processing. The
split is based on conditiors ..., ¢, where each condition is a predicate involvingdiel
values.

SPLIT RINTO XIF €y, .., YIF Cn;

A sAmMPLE transformation chooses a random sampling of digelalt is used to estimate
results. The sample_size is a percentage of tre cfizhe relation, e.g., 0.01 would
represent 1%.

X=SAMPLE Rsample size,

The aspect-oriented versions of these transformstare similar tFILTER e They
apply the transformation to the data and then renedraneous data cuts and advice, or
alternatively, leave the cuts and advice uncharsyjece extraneous cuts and advice are
harmless. We give the aspect-oriented spLIT .o, template below.

SPLIT RpINTO XpIF ¢y, ..., Yo IF Gy

/* The rest is optional */

B=JOIN XpBY Xp.id, R:BYid;

C=JOIN BBY ref, R BY ref;

Xc = FOREACH C GENERATE C.id, C.ref;

Xa = FOREACH C GENERATE C.ref, C.advice;

D=JOIN YpBY Ypid, RcBYid;

E=JOIN EBY ref, Ra BY ref;

Yc = FOREACH C GENERATE C.id, C.ref;

Ya = FOREACH C GENERATE C.ref, C.advice;

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

FILTER ...

Figure 5 The alternative pattern for FILTER a0 Figure 6 The pattern for GENERATR

3.1.4 LOAD, STORE, and DUMP

The LOAD transformation loads a relation from disk into noeyn STOREStores an in-
memory relation to disk, andumpdisplays a relation. The aspect-oriented versiais
these transformations must be trivially augmenteddal with three relations (the data,
the data cuts, and the advice) for each level dadsa rather than a single relation.

3.2 Multiple Tuple

Multiple tuple transformations involve more thaneotuple and generally involve an
advice-specific operation.

321 Joins

Pig Latin has several kinds of joins: cross, regiéd, inner, outer, skewed, and merge.
Additionally Pig Latin has a&oGrougransformation that groups tuples that would join.
Semantically all are variants of agui-join, where two tables are joined on the values of
one or more fields being equivalent.

X=JOIN RBY fg SBY fg

Advice constrains the join. If two tuples potergigjoin, their advice also needs to
“join.” For instance two tuples only join when theemporal advice overlaps (i.e., the
tuples exist at the same time). The following testglfor an aspect-oriented joIQIN aq,
regulates the join with advice.

/* Merge the data with the cuts and advice */
B=JOIN RpBY Rpid, R:BYid;
C=JOIN BBY ref, Ra BY ref;
D=JOIN $BY S.id, & BYid;
E=JOIN D BY ref, Sa BY ref;

/* For each additional level of advice, join cuts and advice */

/* Join on the data conditions */
F=JoiN CBY fg DBY fg

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

/* Check the advice, for each level, repeat the fo llowing */
G = STREAM B THROUGH ADVICE-JOIN;

/* Generate the data, create a new cut */
Xp = FOREACH G GENERATE all datafields, G.id;

/* Generate the data cuts */
Xc = FOREACH G GENERATE G.id, Gu.ref;

/* Generate the advice */
Xa = FOREACH G GENERATE G.ref, G.advice;

The key transformation is streaming the data thinoaag advice-specific joinAQVICE-
JOIN). This user-defined function computes the “joif"tibe advice within a tuple using
an advice-specific technique. Example advice-spegdins are listed below. These
examples assume that the last four (or two) fiéhda tuple are the advice pairs to be
tested, and that the data, id's, and ref's areccaiést”.

» Temporal advice — Computes the temporal join forspaf time periods, i.e., the
time when the periods overlap.
temporal-join((rest, t, u, v, w)) =
fést, max(t, v,), min(u, w))}
» Lineage advice — Lineagealways joins with lineagg and manufactures new
advice that lists both tuples as the source.
lineage-join((rest, x, y)) = {(rest,), (rest, y))
e Security advice — A partial order join is performieyl keeping the most private
group.
security-join((rest, X, y)) = {(rest, lea(x, y))}

Finally, theabvICE-JOIN manufactures a new data cut identifier and adwéterence.

As an example, consider theiN of Subscribers with Personal Info . The
result is shown in Table 7. The data relation dostéhree tuples. Note that the data cuts
identifiers and advice references are composecesalmanufactured from the underlying
identifiers or references, respectively, they iatikcwhich tuples were joined to produce a
tuple in the join result. In this example, no tupleere removed from the join due to
incompatible or mismatching advice, but some of #uwice has been trimmed, for
instance the security advice joins only at the lledethe DBA. The meta-metadata
(Temporal Meta Advice) joins as is since every tuple overlaps the défatbrval
“2007-now.”

322 GROUP
Grouping is important when computing aggregateg.LRitin has asRourransformation
that groups tuples on fields, ... ,f,.

X=GROUP RuUsING fi, ... , f

10

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

.) Lineage Metadata Temporal Meta
Data Data Cuts Security Advice Advice Data Cuts Advice
Name ... ID RF ID Per Sec MetalD Pér Lin RF Me talD Metald Start End
(Maya, ... 1) (1.5, AE) (A.E, DBA, I) (A.E, {1,5}) (I1, X) (X, 2007, 2008)
(Jose, ... 2) (2.6, B.F) (B.F, DBA,II) (B.F, {2,6}) i, y) (Y, 2009, now)
(Knut, ... 3) (2.6, C.F) (C.F, DBA, IlI) (C.F, {3, 6}) 1, 2) (Z, 2007, now)
(3.7, D.G) (D.G, DBA, I) (D.G, {3.7})

Table 7 Subscribersjoined with Personal Info

Advice constrains the grouping. Two tuples potéiytigroup only if their advice also
groups. For instance two tuples are in the samapgomly when their temporal advice
overlaps (i.e., the tuples exist at the same tirie following template regulates the

grouping.

/* Merge the data with the cuts and advice */
B=JOIN RpBY Rpid, RcBYid;
C=JOIN BBY ref, Ra BY ref;

/* Repeat merging for each level of advice */

/* Group on the data values */
D=GrRour CusING f, ... , f;

[* Stream through aspect-specific grouping */
E = STREAM D THROUGH ADVICE-GROUP;

/* Flatten it and regroup using the data and new i d*/
F =FLATTEN E;
Xp =GROUP FUSING f;, ... , f,id;

/* Generate the data cuts */
Xc = FOREACH F GENERATE F.id, F.ref;

/* Generate the advice */
Xa = FOREACH F GENERATE F.ref, F.advice;

The template for &Rourtransformation is sketched in Figure 8. It usesaduice-
specific operatorADVICE-GROUR to compute the groups for the advice. The seicganf
this operator depends on the kind of advice. Tipatino this operator is a set of advice
values (the advice for all of the group memberge dutput is a refined set of advice.

e Temporal advice — Compute membership constant gribat is those intervals
of time for which group membership does not change.
temporal-group(T)
={tu | ¢)OTO(C,uOTO
S(Ow,)H)O7T0 O _,wWOT[t<w<u]) }

» Lineage advice — Lineage does not change the grgupi

lineage-group(T) = noop
» Security advice — Each level in the hierarchyssitvn group.

security-group(T) =T

11

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

) Metadata
- Data .) Lineage Temporal Meta
Cities Cuts Security Advice A dvit?e Data % dvice
Cuts
. . RF
City ID RF ID Per Sec MetalD Per Lin MetalD Metald Start End
(Logan, 1) @, A) (A, Paid, 1) A1) 11, X) (X, 2007, 2008)
(Ogden, 3) (1, B) (B, Paid,II) (B, 2) (mn,y) (Y, 2009, now)
1,C) (C, Lapsed, IlI) (C,3) (,2) (Z, 2007, now)
(3, D) (D, Lapsed, I) (D, 4)

Table 8 Distinct cities

Figure 7 The pattern for JOIN o Figure 8 Thetemplate for GROUR,

As an example, consider grouping tBebscribers relation using the&City field.
To simplify this example we assume a single kinaafice: security advice. The result is
shown in Table 9. Each city will end up in a sepaigroup. But because the cities have
different advice, they will be further split intoare groups. As part of the aspect-specific
grouping, new advice corresponding to each groupasufactured.

3.23 DISTINCT
TheDisTINCT transformation eliminates duplicate tuples fronelation.

X=DISTINCT R

For aspect-oriented distin@iSTINCT .o, When duplicates of a tuple are eliminated, the
data cuts to the duplicates must be changed tohattathe tuple that was not eliminated.
The duplicate elimination does nobalesce, that is, it does not eliminate or reduce
overlapping or redundant advice. The following téatgp makes this change.

12

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

Figure 9 The pattern for DISTINCT a0

/* Merge the data with the data cuts */

C=J0IN R:BYid, RpBYid;
/* Group the duplicates */

G=GROUP Con all datafields
[* Generate the data with a minimum cut ID */

Xp = FOREACH G GENERATE data fields, min(Rp.id);
/* Generate the data cuts */

Xc = FOREACH G GENERATE min(Rp.id), Rc.ref;
/* Advice is not changed */

Xa= Ra;

The template is illustrated in Figure 9.

As an example, consider computing distinct citiesst the subscriber names are
generated yielding three tuples. Next theTINCT transformation is applied, yielding two
tuples in the result (Logan and Ogden). The adfocehe Logan tuples remains as three
distinct perspectives. The result is shown in T&ble

324 UNION
In auNIOoN transformation, the tuples in each relation areipio a single bag. The union
does not eliminate duplicates.

X=UNION R §

The aspect-oriented uniomNION,, Similarly combines the advice and data cuts
(assuming that the ids and references are disjoint)
Xp=UNION Rp, &
/* Repeat for each level of advice */

Xc=UNION R:, &
XA=UNION Ra, Sy

3.3 TheExample Revisited

We return to the example query of Section 2.1. Assuhat we have a single security
aspect. The aspect-oriented version of the progsagiven below.

A =LOAD ao'subscribers’ USING PigStorage()
AS (name: chararray, city: chararray, amo unt:int, id:int);

13

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

Subscribers | Data Cuts Sdcurjty Advice |
(Logan, 11, {(Maya, Logan, $20, 1), ;
(Jose, Logan, $15, 2)}) 119 (J, Paid)
(Logan, 12, {(Jose, Logan, $15, 2)}) (12, H) (H, Lapsed)
(Ogden, 13, {(Knut, Ogden, $20, 3)}) 13, 1) (1, Paid)

Table 9 Grouped subscribers

B = GROUP x0A BY dept;
C = FOREACH B GENERATE aodept, COUNT(B.name);
DUMPAoC,

The aspect-oriented behavior is woven into the mogusing the templates described
in this section, yielding the following Pig Latimggram.

A_D = LOAD 'subscribers.data’ USING PigStorage()

AS (name: chararray, city: chararray,amou ntiint, id:chararray);
A_C = LOAD 'subscribers.cuts' USING PigStorage()

AS (id: chararray, ref: chararray);
A_A = LOAD 'subscribers.advice' USING PigStorage()

AS (ref: chararray, sec: int);

/* Merge the data with the cuts and advice */
B =JOIN A_DBYid, A_CBY id;
C =JOIN B BY ref, A_A BY ref;
/* Group on the data values */
D = GROUP C USING dept;
/* Stream through aspect-specific grouping */
E =STREAM D THROUGH SECURITY-GROUP;
/* Flatten it and regroup using the data and new id */
F =FLATTEN E;
B_D = GROUP F USING dept, id;
/* Generate the data cuts */
B_C =FOREACH F GENERATE id, ref;
/* Generate the advice */
B_A =FOREACH F GENERATE ref, sec;
[* Generate the result */
FOREACHB_D GENERATE dept, COUNT(B_D.name);
B C;

3.4 Program Aspects

A Pig Latin program can also be aspected. A prograpect represents a constraint on the
relations that are evaluated. Suppose that a @mogrvolves a relationRp, R, Ra], and

is aspected by a perspective consisting solelydeica, P». Then the program aspect
transformation constrain®y to tuples that have advice consistent with thesgestive
prior to evaluating the program. It does so aofed.

/* First relate all of the advice, CROSS is Cartesi an product. */

B=CR0OSS Ra, Py
[* Generate new advice */

XA = STREAM B THROUGH ADVICE-PROGRAM-ASPECT;
/* Use new advice to remove extraneous data cuts */

C = COGROUP R¢ BY ref, Xa BY ref;
Xc = FOREACH C GENERATE C.id, C.ref;

14

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

/* Use the new data cuts to remove extraneous tuple s */
D = COGROUP Ry BY id, Xc BY id;
Xp = FOREACH D GENERATE D.data, D.id;

Each advice tuple is passed through the adviceifgpstream, which leaves the tuple
unchanged, trims the tuple, or removes it.

3.5 Complexity Analysis

The increased modeling power of aspect-oriented daimes with an increased cost. In
this section we analyze the worst-case time conitgleassuming that all of the aspect-
oriented transformations are implemented in PignLéome advice-specific behaviors
are implemented as user-defined functions).D.dde the size of each data relati@hbe
the size of a data cuts relation, ahthe the size of an advice relation. Typicalwill be
much smaller tha, and if there is a lot of default advidg,will also be much smaller
thanD. Finally, letz be the number of different kinds of advice, ezjis three for the
examples in this paper, and lebe the number of levels of advice, e.g., in owameglesk

is 2. We assume that all binary operations, ilee, tarious kinds of join, cost ®()
wheren andm are the size of the operands, and unary operatiensfiltering, sampling,
generating, and grouping, costrR(Though this assumption overestimates the jost,co
which in practice (e.g, in a good hash join) cannearly linear, the assumption is
appropriate for our complexity analysis.

To determine the cost of each aspect-oriented foemation, we summed the cost of
every Pig Latin transformation in a template. Fearaple aFILTER o, COStS 1FILTER +
k*(2 JoINs and 2GENERATSE), which yields a total cost of D] + OKDC + kzAC) + O(KC
+ kzA), or OkDC + kzAC) by simplifying the equation. The analysis stdted the cost of
FILTER a0 iS dominated by the cost of th&2 JoINs, which concurs with the general rule of
thumb, that the cost of joins dominates the queajugtion cost.

The analysis is summarized in Table 10. Most of dperations include only the
additional cost of processing the cuts and advics, five operations are much more
eXpPensiVe:FILTER xo JOINao GROUR, SPLIT 50, and SAMPLE. We consider each in turn.
FILTER Ao iNCreases the cost by eliminating extraneous ants advice (those that have
been filtered from the relation). But as we poinbed in Section 3.1.1. the extraneous cuts
and advice is harmless and does not need to bevesm@ther than for consistency),
lowering the cost to @). A similar speedup applies 8PLIT 0 and SAMPLEo JOIN A, IS
expensive because the data has to be joined tadttiee and the data cuts for each join.
This adds a factor of ®DC + kzAC) to the cost. This cost can be amortized overrsgve
joins by performing the join once and keeping tbnéd data in subsequen®IN
transformations. FinallGROUR, is inherently more expensive thamroup because data
must be grouped by both data and metadata, inogehsith the number of groups and the
cost of computing each group.

15

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

rsom | 5, | paam

FILTER O(D) OKDC +kzAC)
GENERATE o(D) O + kA +kC)
DISTINCT o](»)] oD +0)

JOIN oD% O(D’ + kDC + kzAC)
GROUP o](»)] O(KDC + kzAC)
UNION [e10%) O(D” + KC + kzA%)
SPLIT/SAMPLE 0o(D) OKDC + kzAC)
LOAD/STORE/DUMP | O(D) O(D +kC +kzA)
PROGRAM ASPECTS - O(KDC + kzAC)

Table 10 Complexity Analysis

4 Redated Work

There is a little previous research on supportfanifold kinds of metadata in database
management systems. Most closely related to thieme our work on aspect-oriented
relational algebra [10],[11], and query languagasnietadata annotating XML [8],[16].
This paper in contrast focuses on Pig Latin, thoughtake the same approach as our
relational algebra research by using data cutsadnrite relations and the modeling of the
many operations that relational and Pig Latin sharg., joins, selection, and projection.
This paper makes three novel contributions. Firgt apply AOP to Pig Latin
transformations that differ from relational algeldtransformations, such as grouping,
distinct, and sample, as well as to those that fammiliar relational algebraic
transformations. Second we show how to model mettdata as advice tagging advice.

The database research community has researchedsnandesupport for specific kinds
of metadata, or in our terminology, specific kirafsaspects. One of the most important
and most widely researched kinds is temporal. Tealgxtensions of every data model
exist, for instance, relational [25], object-oriest [26], and XML [12]. This paper
generalizes the work in relational temporal databdsy proposing an infrastructure that
supports many kinds of advice, not just temporalice More specifically we extend
tuple-timestamped models [15], whereby the tempmetiadata modifies the entire tuple.
Other tuple-level, relational model extensions upport security, privacy, probabilities,
uncertainty, and reliability have been researchbd{ no general framework or
infrastructure exists which can support all thedrate varieties.

There are several systems that have aspect-likgogufor combining different kinds
of metadata. Mihaila et al. suggest annotating @atla quality and reliability metadata
and discuss how to query the data and metadatarbioation [20]. The SPARCE
system wraps or super-imposes a data model witlyeax bf metadata [21]. The metadata
is active during queries to direct and constraggbarch for desired information. Systems
that provide mappings between metadata (schemakglm@ie also becoming popular
[2],[19]. Our approach differs from these systenysfdcusing on Pig Latin to support

16

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

AOP, and by building a framework whereby the betiawif individual data aspects can
be specified as “plug-in” components.

The information retrieval community has been veclive in researching descriptive
metadata, in particular metadata that is usedassifly knowledge [28]. The Dublin Core
is a commonly used classification standard [7]. @mrcial and research systems [1] to
manage (descriptive) metadata collections have Heeeloped. Methods to automatically
extract content-related metadata have also beerand®ed [14],[18]. The focus of the
information retrieval research is on how to best,uwmanage, and collect metadata to
describe data to improve search [13]. In contragt,focus is on modeling data aspects
which impose a semantics on thase of the data, i.e., they go beyond the simple,
descriptive tagging of data.

Finally, our goal in this paper, consistent with R@nd unlike many of the above
approaches, is to maximally reuse existing langsiaaged systems. Hence we focus on
using Pig Latin itself to support aspect-orientedadby weaving the support for cross-
cutting concerns, expressed in Pig Latin, intolRitin programs.

5 Conclusions

This paper proposes adapting a popular softwaréneegng design technique to the
management of data in a cloud computing contextre®iticloud computing systems do a
poor job of evaluating cross-cutting concerns. Dzda a wide variety of cross-cutting
concerns: time, security, reliability, privacy, dtia summaries, rankings, and
uncertainty. In this paper we adapted techniques flaspect-oriented programming
(AOP) to data. A data aspect combines advice (matdadnd special semantics) with a
data cut (that pinpoints the data which the adwicelifies). In our approach, the advice is
woven around the data enriching its meaning and Tiseugh specific data aspects have
individually been studied in detail, e.g., as apenal database, data models and query
languages that combine many, disparate aspectsbesiwed little attention.

This paper presents a design for aspect-orientgdL&lin. Pig Latin is a dataflow
language for analyzing data in the cloud. We predosnnotating or tagging Pig data
using data aspects. A data aspect binds advicea@au=i) to data. The advice also has
semantics that must be observed when the dateet insa query. We showed how to
weave Pig Latin into a Pig Latin program to supgooiss-cutting concern data concerns.

6 Acknowledgements

This material is based upon work supported by tltiddal Science Foundation under
Grant No. 1144404 entitled “lll: EAGER: Aspect-arted Data Weaving”. Any opinions,

17

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

findings, and conclusions or recommendations espitén this material are those of the
authors and do not necessarily reflect the viewts®National Science Foundation.

7 References

[1] M. Baldonado, C.-C. Chang, L. Gravano, A. Paeptkietadata for Digital Libraries, Architecture and
Design Rationale,” iCM/IEEE JODL, pp. 47-56, 1997.

[2] P..Bernstein, “Applying Model Management to ClaakMeta Data ProblemsCIDR 2003, pp. 209-220.
[3] Deepavali Bhagwat, Laura Chiticariu, Wang Chiew ,Tand Gaurav Vijayvargiya, “An Annotation
Management System for Relational Databases/LiDB, 2004, pp. 900-911.

[4] R. Bose and James Frelineage Retrieval for Scientific Data Processing: A Survey. ACM Computing
Surveys, 2005. 37(1): 1-28.

[5] P.Buneman, A. Chapman, and J. Cheney, “Provendaocagement in Curated Databases,3iGMOD,
2006. Chicago, pp. 539-550.

[6] Peter Buneman, Sanjeev Khanna, Keishi Tajima, aaddg\MChiew TanArchiving Scientific Data. ACM
TODS, 2004. 29(1): 2—42.

[7]1 Dublin Core Metadata Initiative. Atublincore.org.

[8] C. Dyreson, M. Bohlen, and C. Jensen. “Capturind @uerying Multiple Aspects of Semi-structured
Data,” inVLDB 1999, pp: 290-301.

[9] C. Dyreson, R. T. Snodgrass, F. Currim, S. Curriich &. JoshiWeaving temporal and reliability aspects
into a schema tapestry. Data and Knowledge Engineering, 63(3), Decemb8i72pp. 752-773.

[10] C. Dyreson and Omar Florez. “Data Aspects in atitelal Database,” in CIKM 2010, pp. 1373-1376.
[11] Curtis Dyreson. “Aspect-oriented Relational Algebia EDBT 2011, pp, 377-388.

[12] Dengfeng Gao and Richard T. Snodgrass. “Tempoieinglin the Evaluation of XML Queries”. In
VLDB, pp. 632-643, 2003.

[13] Hector Garcia-Molina, Diane Hillmann, Carl LagoZeglizabeth Liddy, and Stuart Weibel, “How
important is metadata?”, IKCM/IEEE-CSJODL, pp. 369-369, 2002.

[14] Luis Gravano and Panagiotis G. Ipeirotis and Meh&ahami, “QProber: A system for automatic
classification of hidden-Web databases”. ACM Tratisas on Information Systems. 21(1): 1-41, 2003.

[15] C. S. Jensen, M. Soo, and R. T. Snodgrass, “Utiicaof Temporal Data Models,” ilCDE, Vienna,
Austria, 1993, pp. 262-271.

[16] Hao Jin and Curtis Dyreson, “Supporting ProscrptMetadata in an XML DBMS,” iDEXA Turin,
Italy, September 2008, pp. 479-492.

[17] Anastasios Kementsietsidis, Floris Geerts, and ®gano, “MONDRIAN: Annotating and Querying
Databases through Colors and Blocks,@DE, 2006, p. 82.

[18] Dongwon Lee and Yousub Hwangxtracting Semantic Metadata and its Visualization. ACM
Crossroads, 2001, 7(3): 19-27.

[19] Sergey Melnik, E. Rahm, E., and Phil A. BernsteRondo: A Programming Platform for Generic Model
Management”. IARCM SSGMOD 2003, pp. 193-204.

[20] George A. Mihaila, Louiga Raschid, Maria-Esther alid‘Using Quality of Data Metadata for Source
Selection and Ranking,” MWebDB (Informal Proc.): 93-98. May 2000.

[21] Sudarshan Murthy, David Maier, Lois M. L. Delcamb&hawn Bowers. “Superimposed Applications
using SPARCE,” inCDE: 861. Boston, MA, USA, March 2004.

[22] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Koms, “Pig Latin: a Not-so-Foreign Language for
Data Processing,” islGMOD Conference, 2008, pp. 1099-1110.

[23] Awais Rashid and N. Loughran, “Relational Data-b&spport for Aspect-Oriented Programming,” in
NetObjectDays Conference. LNCS. Volume 2591, 2002, pp. 233-247.

[24] Awais Rashid, “Aspect-Oriented Programming for Date Systems,” irAspect-Oriented Software
Development, 2004.

[25] Richard T. Snodgrass (EdThe TSQL2 Temporal Query Language. Kluwer, 1995. 629 pages.

18

Copyright @ 2012. Curtis E. Dyreson. All rightseaged.

[26] Richard T. Snodgrass, “Temporal Object-oriented abases: a Critical Comparison,” iklodern
Database Systems: the Object Model, I nteroperability, and Beyond. Addison Wesley, 1995. pp. 386-408.
[27] R. Snodgrass. Developing Time-Oriented Databasdidgtipns in SQL. Kaufmann. 1999. 540 pages.
[28] Adrienne TannenbaunMetadata Solutions. Using Metamodels, Repositories, XML, and Enterprise
Portals to Generate Information on Demand. Addison-Wesley, 2001.

[29] Jennifer Widom, “Trio: A System for Integrated Mgeanent of Data Accuracy, and Lineage,’0IDR,

2005. pp. 262-276.

19

