
Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 1

The Design of Aspect-Oriented Pig Latin

Curtis Dyreson and Omar U. Florez

Utah State University
curtis.dyreson@usu.edu, omar.florez@aggiemail.usu.edu

Abstract. In this paper we apply the aspect-oriented programming (AOP) paradigm
to Pig Latin, a dataflow language for cloud computing. Missing from Pig Latin is
support for cross-cutting data concerns such as versioning, privacy, and reliability.
AOP techniques can be used to weave metadata around Pig data. The metadata
imbues the data with additional semantics that must be observed in the evaluation of
Pig Latin programs. In this paper we show to modify Pig Latin to process data
woven together with metadata. The data weaver is a layer that maps a Pig Latin
program to an augmented Pig Latin program using Pig Latin templates or patterns.
We also show how to model additional levels of advice, i.e., meta-metadata.

1 Introduction

No matter whether data is stored in a database, flat file, spreadsheet, or as persistent
objects, data has cross-cutting concerns. A cross-cutting data concern is a data need that
is universal (potentially applicable to an entire database) and widespread (can be used to
enhance many different databases). Many data collections have cross-cutting data
concerns, and as a collection evolves, new concerns may arise. For instance, a new
privacy policy is implemented to hide certain information in a Facebook page. A privacy
cross-cutting concern could be added to the relevant Facebook data to hide it from the
general public. Data quality [3],[17] provenance [5],[6] accuracy and lineage [4],[29],
time, security, reliability and performance are potential cross-cutting concerns. Each
concern may have an individual and distinct semantics.

In spite of many years of research on individual concerns, e.g., 30+ years of research in
temporal databases, research and industrial database management systems (DBMSs) lack
support for cross-cutting data concerns (though some DBMSs support individual
concerns, e.g., security). DBMSs are large, complex systems and not designed to be easily
configured or modified to support a cross-cutting concern. Developers currently have to
rely on ad-hoc techniques to add concerns to a data collection.

To better support cross-cutting data concerns a new approach is needed, one that looks
to fields outside of databases for useful techniques and insights. Aspect-oriented
programming (AOP) provides a framework that can be adapted to our needs. AOP was
developed to add cross-cutting concerns to a program without having to reprogram. In

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 2

AOP, an aspect weaver injects code, called advice, into a program at specified places,
known as point cuts, to add new functionality to an existing program.

Previously we employed aspect-oriented techniques to create aspect-oriented data
(AOD) for data stored in the relational model [10],[11]. AOD “tags” data with metadata
from a cross-cutting data concern to create a data aspect. The aspect becomes active
whenever the data is used. A data aspect weaver weaves behavior for the cross-cutting
concern into the evaluation of a query, constraint, or object management operation. AOD
can successfully model the kinds of cross-cutting concerns already researched in
databases (e.g., time, provenance) and new kinds not yet researched. For instance,
versioned security where a magazine subscriber has access to articles at the time the
subscription was current even after the subscription has ended. Versioned security can be
modeled as a temporal aspect tagging a security aspect in our framework, i.e., as meta-
metadata. Recursively higher levels of advice (meta-metadata) can also be modeled. We
showed how to weave behavior into the relational algebra [11]. There has also been other
research in using AOP in databases. Research has addressed using aspect-oriented
techniques to program databases [24], using a relational database to support AOP [23],
and applying AOP to XML schema [9].

Figure 1 gives a broad classification of the space of cross-cutting data concerns that
can be addressed using an AOD approach. In general, a data aspect has access to two
things: data and advice, which is the metadata that annotates the data. A data aspect
becomes active when the data is used in an operation in the sense that the aspect can
change (insert, update, or modify) the data or make no change. The aspect could also
change the advice. In general, change or no change are the only possible data effects
(ignoring side effects like computation time involved). In Figure 1 the concerns are
partitioned into four categories based on whether the advice and/or data changes. For
example, a temporal cross-cutting data concern constructs new timestamps during some
query operations, such as a join operation. The new timestamps become advice for some
data, e.g., a tuple in the join result. This timestamps may (logically) delete data since the
constructed times may be shorter. As a second example, consider data lineage. Lineage
computes as metadata references to all of the data that contributes to a particular result,
that is, it constructs advice for data, but the constructed advice does not change the data.
As a third example, a profiling cross-cutting concern generates statistics (new data) about
the data usage, but the advice itself does not change.

In this paper we propose adapting AOP to Pig Latin [22] to support cross-cutting data
concerns. Pig Latin is a dataflow language and cloud computing platform for the analysis

authored by
language

vacuuming
prof iling

no change
(noop)

l ineage
provenance
probabilistic

temporal
pr ivacy
security

change

no change

(noop)

change

authored by
language

vacuuming
prof iling

no change
(noop)

l ineage
provenance
probabilistic

temporal
pr ivacy
security

change

no change

(noop)

change

Data

A
dv

ic
e

Figure 1 The space of cross-cutting concerns

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 3

of massive datasets. Developed by researchers at Yahoo, Pig Latin is one of the first, and
is (in our opinion) the best, of the emerging cloud computing languages for data analysis.
Though relatively new, Pig Latin already has a strong user and development community1.

This paper is organized as follows. The next section develops a motivating example.
After that, data aspects are developed in greater detail. The paper then presents aspect-
oriented Pig Latin. The final sections cover related work and summarize the paper.

2 MOTIVATION

Assume that Magazine.com stores data about its subscribers in a collection of Pig
relations. A Pig relation is a bag of tuples, similar to a table in an SQL database. Each
tuple is an ordered list of fields. Each field is a piece of data. Unlike an SQL table, not all
tuples have to have the same number of fields. Moreover, Pig relations can have values
that are themselves tuples, bags, or maps, something that is not allowed in a relational
database. A portion of the data, the Subscriber relation, is shown in Table 1. Each
tuple in Subscriber records, in order, a name, city, and subscription amount.

2.1 Pig Latin

Magazine.com would like to count the subscribers per city. The following Pig Latin
program computes the desired count.

 A = LOAD 'subscribers' USING PigStorage()
 AS (name: chararray, city: chararray, amoun t: int);
 B = GROUP A BY city;
 C = FOREACH B GENERATE city, COUNT(B.name);
 DUMP C;

The program has four statements. The first statement loads the data, and furthermore
gives a name and a type to each field within a tuple in the data. The statement also
establishes the data node A. A grouping transformation is applied to the data in node A to
produce node B. The data is grouped into bags by value as shown in Table 2. The data in
node B is then processed to generate the name and count for each city as shown in Table 3.
The final statement, DUMP, displays the data accumulated at node C.

This program has a very simple dataflow, with only three nodes. To evaluate the
program, Pig Latin first constructs a representation of the dataflow as illustrated in Figure
2. Next it applies query optimization rules to optimize the data flow (for instance the
GENERATE transformation could be combined with the GROUP transformation to generate
only the needed fields while grouping). Only when the DUMP statement is parsed is the

1 http://hadoop.apache.org/pig/

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 4

optimized dataflow program evaluated using Hadoop, that is, the program is transformed
to map-reduce constructs and executed in parallel.

On-line magazines earn revenue by restricting content to paid subscribers. Security
enforces the restriction. For data, each subscriber should be able to see their own data, but
not that of others. Subscribers complain that once their subscription ends, they are no
longer able to see the content to which they once subscribed, but they should be able to do
so. Magazine.com decides to support both security and versioned security, whereby
subscribers still have access to content as of the time when they subscribed. To help the
programmers implement the system, Magazine.com also decides that it is important to
support lineage in query evaluation. Lineage keeps track of which facts were used to
produce a result, thereby helping programmers understand how the query produced a
particular result.

To accommodate the new requirements, all cross-cutting concerns, the designers need
to add new data and functionality to their existing database and its applications. Ideally,
the designers will be able to add without changing a line of existing Pig Latin programs.

2.2 Aspect-oriented Pig Latin Data

Pig Latin is a “NoSQL” language. A NoSQL language replaces SQL with a language that
is better suited to programmers. Pig Latin is more amenable than declarative languages,
like SQL, to aspect-oriented techniques. A Pig Latin program is a sequence of statements.
Each statement represents a transformation of some data.

Pig Latin does not support cross-cutting data concerns. Users must resort to ad hoc
techniques to implement, for instance, a temporal semantics for data. Snodgrass has
pointed out the perils of relying on user good faith to correctly implement temporal
semantics [27]. Usually Pig Latin programmers will not know which cross-cutting data
concerns are present nor know how to program the semantics of an individual concern.

Pig Latin lacks many of the features found in other database languages. Pig Latin is a
schema-less language. In the relational model of data, data is rigidly described by a fixed
schema, but in Pig Latin, users load data from text files or back-end databases by
sketching the types and number of each column in a relation in a query. Pig Latin also
lacks data modification operators, the data is (assumed to be) created and maintained by
other processes. Not surprisingly, Pig Latin also has no data constraint specifications. All

 Subscriber

 (Maya, Logan, $20)
 (Jose, Logan, $15)
 (Knut, Ogden, $20)

Table 1 Some data about subscribers to
Magazine.com

LOAD …

GROUP A …

A

B

C

FOREACH B …

LOAD …

GROUP A …

A

B

C

FOREACH B …

Figure 2 Dataflow in the simple program

 B

 (Logan, {(Maya, Logan, $20),
 (Jose, Logan, $15)})

 (Ogden, {(Knut, Ogden, $20)})

Table 2 Subscribers grouped by city

 C

 (Logan, 2)
 (Ogden, 1)

Table 3 The count of subscribers

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 5

constraints are maintained by other processes. Finally, the Pig Latin data model supports
sets and bags, as well as tuples; it is a non-first normal form (1NF) data model. So while
sharing some commonalities with other database query languages, Pig Latin is different,
over and above the cloud computing framework (Hadoop) that supports its back-end.

In an aspect-oriented approach, the database designers “tag” data in the database with
advice, creating aspects. The tagging could be at different levels, i.e., in the Pig Latin data
model, the tagged data could be an attribute value, a tuple, or a relation. We focus on
tuple- and relation-tagging in this paper. The advice that tags a tuple is assumed to pertain
to all of the attribute values within that tuple, and for a relation, the advice applies to all of
the tuples in the relation. Relation-tagging is useful for establishing default advice for
each tuple in the relation.

Though aspects are developed independently, more than one kind of advice can tag a
tuple or relation, for instance a tuple could be tagged with both lineage and security
advice. The advice can be combined into a single perspective [8], or remain independent.
Finally, since the advice is data, it too can be advised by meta-metadata. That is, metadata
is to data as meta-metadata to metadata.

Several data cuts are concretely represented in Table 4 and Table 5 which extend and
refine the subscriber database example of the previous section. We assume that each data
tuple has an “ID ” to allow it to be identified. This is the final field in each data tuple. For
instance Maya's subscription is identified as 1. Next, each advice tuple is prefixed with a
“perspective id” (Per), which is the first field in each advice tuple. The first tuple of
Security Advice has a Per of A. A data cut is a pairing of a tuple id with an advice
id. Table 4 shows the aspected Subscribers relation. The Data Cuts relation
weaves advice to data identified by the RF column. This tagging scheme is repeated for
the meta-metadata (Temporal Meta Advice and Metadata Data Cuts). Each
subscriber is tagged by a security aspect that records the security on the tuple and a
lineage aspect that denotes how the tuple was constructed. Initially, the lineage is just the
identifier of the tuple itself. The security is a partial order from the lowest levels (Paid
and Lapsed) to the top level (DBA). Only paid subscribers have access to the content.
The meta-metadata records when the security advice is current. Jose was a paid subscriber
from 2007 to 2008 at which time his subscription lapsed. If the data is rolled back to its
state current in 2007, Jose should have access to the content of the site. Said differently,
Jose paid for the 2007 to 2008 content and therefore should have access to that data by
setting his content perspective to some time in that range. An advice tuple shaded in grey
denotes default advice, that is, data advised by relation-tagging. The default temporal
advice starts in 2007 when the site began.

Table 5 extends the database with an aspected Personal Info relation that records
personal information about each subscriber. By default only the DBA can access this data.

Subscribers
Data
Cuts

Security Advice

 Lineage
Advice

 Metadata
Data Cuts

 Temporal Meta
Advice

 Name City Amt ID RF ID Per Sec MetaID Per L in RF MetaID MetaId Start End
(Maya, Logan, $20, 1) (1, A) (A, Paid, I) (A, {1 }) (II, X) (X, 2007, 2008)
(Jose, Logan, $15, 2) (2, B) (B, Paid,II) (B, {2 }) (III, Y) (Y, 2009, now)
(Knut, Ogden, $20, 3) (2, C) (C, Lapsed, III) (C , {3}) (I, Z) (Z, 2007, now)

 (3, D) (D, Lapsed, I) (D, {3})

Table 4 Aspected subscribers

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 6

2.3 Weaving Behavior into Pig Latin Programs

An advice’s behavior has to be woven into the evaluation of a Pig Latin program. The
weaving technique that we adapt is to modify each transformation in a dataflow program
is depicted in Figure 3. In Figure 3(a), the typical dataflow is depicted, data at a node R is
transformed to that at node X. Figure 3(b) shows a Pig Latin pattern or template that will
replace the transformation of Figure 3(a). In the aspected case, the relation at node R
consists of three components: a data relation, RD, an advice relation, RA, and a data cuts
relation, RC. Without loss of generality we focus on a single kind of advice, more
generally there would be several advice relations. Each of these relations must be
transformed to create the three components of the result data node: XD, XA, and relation,
XC. In the next section we develop a specific template for each kind of Pig Latin
transformation. But in general, the weaving is Pig Latin program modification whereby
each statement in a program is replaced by a sequenced of statements constructed by
instantiating a template for the transformation.

This strategy can be extended to additional levels of advice, e.g., meta-metadata. The
pattern is repeatedly applied for each level as will be developed in the next section.

3 Aspect-Oriented Pig Latin

This section describes modifications of Pig Lain to support aspect-oriented data. Recall
that each kind of aspect (e.g., security) enforces a semantics on the use of the data. All
uses must obey that semantics. We model the bulk of Pig Latin transformations, showing
how each is redefined to support data aspects. Each transformation is redefined using
(non-aspect-oriented) Pig Latin to illustrate that Pig Latin itself can be used to become
aspect-oriented.

Each of the modifications is described in terms of a pattern or template. The template is
applied to rewrite the corresponding transformation in a Pig Latin program.

We consider two broad categories of Pig Latin transformations: single vs. multiple
tuple transformations. We first model single tuple transformations which involve only one
tuple at a time and are generally simpler than the multiple tuple case.

3.1 Single Tuple

The single tuple transformations are FILTER , GENERATE, SPLIT , SAMMPLE, LOAD, DUMP, and
STORE.

Personal Info Data Cuts
 Security

Advice
 Lineage

Advice

(Maya, maya@aol.com, 5) (5, E) (E, DBA) (E, {5})
(Jose, jose@foo.com, 6) (6, F) (F, DBA) (F, {6})
(Knut, knut@aol.com, 7) (7, G) (G, DBA) (G, {7})

Table 5 Aspected personal information about subscribers

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 7

3.1.1 FILTER
The FILTER transformation selects tuples from a data node that meet some condition, P.

 X = FILTER R on P;

As the FILTER may remove some tuples, the data cuts and advice should be synchronized
with the data, removing extraneous advice, following the FILTER . The template for
FILTER AO is given below, with comments enclosed within '/* */ '.

 /* Filter the data */

 XD = FILTER RD on P;

 /* The code below is optional, repeated for each le vel of advice */
 /* Remove extraneous cuts (cuts for tuples that wer e removed by
 filtering), remove by computing all the cuts st ill needed. */

 C = JOIN RC BY id, XD BY id;

 XC = FOREACH C GENERATE C.id , C.ref;

 /* Remove extraneous advice */

 A = JOIN RA BY ref, XC BY ref;

 XA = FOREACH A GENERATE A.ref, A.data;

Figure 4 illustrates the basic pattern for the FILTER transformation. The pattern to the
right of the FILTER transformation should be repeated for each level of advice. As an
example, consider a query to filter subscribers below $20. The result is shown in Table 6.
Maya and Knut are filtered, and synchronized with the advice to retain only their data cuts
and advice tuples. Alternatively, the extraneous advice is harmless (except for occupying
space) and can be left in place leading to the alternative, cheaper plan shown in Figure 5.

3.1.2 GENERATE
The GENERATE transformation projects only specified fields, f1, ... , fn, into the result.

FILTER …

X

R

a) Unaspected Pig Latin

XD

RD

b) Aspected Pig Latin

XC

RC

XA

RA

JOIN …

D1 D1

FILTER …

D1

JOIN …

R

X

FILTER …

X

R

a) Unaspected Pig Latin

XD

RD

b) Aspected Pig Latin

XC

RC

XA

RA

JOIN …

D1 D1

FILTER …

D1

JOIN …

R

X

Figure 3 Weaving by template instantiation

XD

RD

XC

RC

XA

RA

JOIN …

CFILTER …
A

JOIN …

R

X

FOREACH …FOREACH …

XD

RD

XC

RC

XA

RA

JOIN …

CFILTER …
A

JOIN …

R

X

FOREACH …FOREACH …

Figure 4 The pattern for FILTER AO

Subscribers
Data
Cuts

Security Advice

 Lineage
Advice

 Metadata
Data Cuts

 Temporal Meta
Advice

 Name City Amt ID RF ID Per Sec MetaID Per L in RF MetaID MetaId Start End
(Maya, Logan, $20, 1) (1, A) (A, Paid, I) (A, {1 }) (I, Z) (Z, 2007, now)
(Knut, Ogden, $20, 3) (3, D) (D, Lapsed, I) (D, {3})

Table 6 Subscribers that paid $20 or more for their subscription

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 8

 X = FOREACH R GENERATE f1, ... , fn;

As all the tuples are retained, the data cuts and advice are unchanged, and so the template
for GENERATEAO is simple.

 /* GENERATE the data */

 XD = FOREACH RD GENERATE f1, ... , fn;
 /* Repeat rest of pattern for each level of advice */

 XC = RC;

 XA = RA;

The template is illustrated in Figure 6. As an example, consider generating subscriber
cities. Each city is generated along with all of the advice and meta advice.

3.1.3 SPLIT and SAMPLE
A SPLIT transformation partitions a relation into n relations for parallel processing. The
split is based on conditions c1 ..., cn where each condition is a predicate involving field
values.

 SPLIT R INTO X IF c1, ..., Y IF cn;

A SAMPLE transformation chooses a random sampling of a relation. It is used to estimate
results. The sample_size is a percentage of the size of the relation, e.g., 0.01 would
represent 1%.

 X = SAMPLE R sample_size;

The aspect-oriented versions of these transformations are similar to FILTER AO. They
apply the transformation to the data and then remove extraneous data cuts and advice, or
alternatively, leave the cuts and advice unchanged since extraneous cuts and advice are
harmless. We give the aspect-oriented split, SPLIT AO, template below.

 SPLIT RD INTO XD IF c1, ..., YD IF cn;

 /* The rest is optional */

 B = JOIN XD BY XD.id, RC BY id;

 C = JOIN B BY ref, RA BY ref;

 XC = FOREACH C GENERATE C.id, C.ref;

 XA = FOREACH C GENERATE C.ref, C.advice;
...

 D = JOIN YD BY YD.id, RC BY id;

 E = JOIN E BY ref, RA BY ref;

 YC = FOREACH C GENERATE C.id, C.ref;

 YA = FOREACH C GENERATE C.ref, C.advice;

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 9

3.1.4 LOAD, STORE, and DUMP
The LOAD transformation loads a relation from disk into memory, STORE stores an in-
memory relation to disk, and DUMP displays a relation. The aspect-oriented versions of
these transformations must be trivially augmented to deal with three relations (the data,
the data cuts, and the advice) for each level of metadata rather than a single relation.

3.2 Multiple Tuple

Multiple tuple transformations involve more than one tuple and generally involve an
advice-specific operation.

3.2.1 Joins
Pig Latin has several kinds of joins: cross, replicated, inner, outer, skewed, and merge.
Additionally Pig Latin has a COGROUP transformation that groups tuples that would join.
Semantically all are variants of an equi-join, where two tables are joined on the values of
one or more fields being equivalent.

 X = JOIN R BY fR, S BY fS;

Advice constrains the join. If two tuples potentially join, their advice also needs to
“join.” For instance two tuples only join when their temporal advice overlaps (i.e., the
tuples exist at the same time). The following template for an aspect-oriented join, JOIN AO,
regulates the join with advice.

 /* Merge the data with the cuts and advice */

 B = JOIN RD BY RD.id, RC BY id;

 C = JOIN B BY ref, RA BY ref;

 D = JOIN SD BY SD.id, SC BY id;

 E = JOIN D BY ref, SA BY ref;

 /* For each additional level of advice, join cuts and advice */
 ...

 /* Join on the data conditions */

 F = JOIN C BY fR, D BY fS;

XD

RD

XC

RC

XA

RA

FILTER …

R

X XD

RD

XC

RC

XA

RA

FILTER …

R

X

Figure 5 The alternative pattern for FILTER AO

XD

RD

XC

RC

XA

RA

FOREACH …

R

X XD

RD

XC

RC

XA

RA

FOREACH …

R

X

Figure 6 The pattern for GENERATEAO

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 10

 /* Check the advice, for each level, repeat the fo llowing */

 G = STREAM B THROUGH ADVICE-JOIN;

 /* Generate the data, create a new cut */

 XD = FOREACH G GENERATE all data fields, G.id;

 /* Generate the data cuts */

 XC = FOREACH G GENERATE G.id, G.ref;

 /* Generate the advice */
 XA = FOREACH G GENERATE G.ref, G.advice;

The key transformation is streaming the data through an advice-specific join (ADVICE-

JOIN). This user-defined function computes the “join” of the advice within a tuple using
an advice-specific technique. Example advice-specific joins are listed below. These
examples assume that the last four (or two) fields in a tuple are the advice pairs to be
tested, and that the data, id's, and ref's are called “rest”.

• Temporal advice – Computes the temporal join for pairs of time periods, i.e., the
time when the periods overlap.
 temporal-join((rest, t, u, v, w)) =
 {(rest, max(t, v,), min(u, w))}

• Lineage advice – Lineage x always joins with lineage y and manufactures new
advice that lists both tuples as the source.
 lineage-join((rest, x, y)) = {(rest, x), (rest, y))

• Security advice – A partial order join is performed by keeping the most private
group.
 security-join((rest, x, y)) = {(rest, lca(x, y))}

Finally, the ADVICE-JOIN manufactures a new data cut identifier and advice reference.
As an example, consider the JOIN of Subscribers with Personal Info . The

result is shown in Table 7. The data relation contains three tuples. Note that the data cuts
identifiers and advice references are composed values, manufactured from the underlying
identifiers or references, respectively, they indicate which tuples were joined to produce a
tuple in the join result. In this example, no tuples were removed from the join due to
incompatible or mismatching advice, but some of the advice has been trimmed, for
instance the security advice joins only at the level of the DBA. The meta-metadata
(Temporal Meta Advice) joins as is since every tuple overlaps the default interval
“2007-now.”

3.2.2 GROUP
Grouping is important when computing aggregates. Pig Latin has a GROUP transformation
that groups tuples on fields, f1, ... , fn.

 X = GROUP R USING f1, ... , fn;

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 11

Advice constrains the grouping. Two tuples potentially group only if their advice also
groups. For instance two tuples are in the same group only when their temporal advice
overlaps (i.e., the tuples exist at the same time). The following template regulates the
grouping.

 /* Merge the data with the cuts and advice */

 B = JOIN RD BY RD.id, RC BY id;

 C = JOIN B BY ref, RA BY ref;

 /* Repeat merging for each level of advice */
 ...

 /* Group on the data values */

 D = GROUP C USING f1, ... , fn;

 /* Stream through aspect-specific grouping */

 E = STREAM D THROUGH ADVICE-GROUP;

 /* Flatten it and regroup using the data and new i d */

 F = FLATTEN E;

 XD = GROUP F USING f1, ... , fn, id;

 /* Generate the data cuts */

 XC = FOREACH F GENERATE F.id, F.ref;

 /* Generate the advice */
 XA = FOREACH F GENERATE F.ref, F.advice;

The template for a GROUP transformation is sketched in Figure 8. It uses an advice-
specific operator, ADVICE-GROUP, to compute the groups for the advice. The semantics of
this operator depends on the kind of advice. The input to this operator is a set of advice
values (the advice for all of the group members). The output is a refined set of advice.

• Temporal advice – Compute membership constant periods, that is those intervals
of time for which group membership does not change.
 temporal-group(T)
 = { (t, u) | (t, _)∈T ∧ (_, u)∈T ∧
 ¬(∃(w, _)∈T ∨ ∃(_, w)∈T [t < w < u]) }

• Lineage advice – Lineage does not change the grouping.
 lineage-group(T) = noop

• Security advice – Each level in the hierarchy is its own group.
 security-group(T) = T

Data Data Cuts

Security Advice
 Lineage

Advice
 Metadata

Data Cuts
 Temporal Meta

Advice
 Name … ID RF ID Per Sec MetaID Per Lin RF Me taID MetaId Start End
(Maya, … 1) (1.5, A.E) (A.E, DBA, I) (A.E, {1,5}) (II, X) (X, 2007, 2008)
(Jose, … 2) (2.6, B.F) (B.F, DBA,II) (B.F, {2,6}) (III, Y) (Y, 2009, now)
(Knut, … 3) (2.6, C.F) (C.F, DBA, III) (C.F, {3, 6}) (I, Z) (Z, 2007, now)

 (3.7, D.G) (D.G, DBA, I) (D.G, {3,7})

Table 7 Subscribers joined with Personal Info

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 12

As an example, consider grouping the Subscribers relation using the City field.

To simplify this example we assume a single kind of advice: security advice. The result is
shown in Table 9. Each city will end up in a separate group. But because the cities have
different advice, they will be further split into more groups. As part of the aspect-specific
grouping, new advice corresponding to each group is manufactured.

3.2.3 DISTINCT
The DISTINCT transformation eliminates duplicate tuples from a relation.

 X = DISTINCT R;

For aspect-oriented distinct, DISTINCT AO, when duplicates of a tuple are eliminated, the
data cuts to the duplicates must be changed to attach to the tuple that was not eliminated.
The duplicate elimination does not coalesce, that is, it does not eliminate or reduce
overlapping or redundant advice. The following template makes this change.

Cities
Data
Cuts

Security Advice

Lineage
Advice

 Metadata
Data
Cuts

Temporal Meta

Advice

 City ID RF ID

Per Sec MetaID

Per Lin
 RF

MetaID

MetaId Start End

(Logan, 1) (1, A) (A, Paid, I) (A, 1) (II, X) (X, 2007, 2008)
(Ogden, 3) (1, B) (B, Paid,II) (B, 2) (III, Y) (Y, 2009, now)

 (1, C) (C, Lapsed, III) (C, 3) (I, Z) (Z, 2007, now)
 (3, D) (D, Lapsed, I) (D, 4)

Table 8 Distinct cities

JOIN …

XD

RD

XC

RC

XA

RA

JOIN …

B

STREAM …

R

X

FOREACH …

C

FOREACH …

SD SC SAS

JOIN …
D

E

JOIN …

G

JOIN …

FOREACH …

F

JOIN …

XD

RD

XC

RC

XA

RA

JOIN …

B

STREAM …

R

X

FOREACH …

C

FOREACH …

SD SC SAS

JOIN …
D

E

JOIN …

G

JOIN …

FOREACH …

F

Figure 7 The pattern for JOIN AO

XD

RD

XC

RC

XA

RA

JOIN …

B

GROUP …

R

X

FOREACH …
FOREACH …

C

JOIN …

D

E

STREAM …

FLATTEN …

G

GROUP …

XD

RD

XC

RC

XA

RA

JOIN …

B

GROUP …

R

X

FOREACH …
FOREACH …

C

JOIN …

D

E

STREAM …

FLATTEN …

G

GROUP …

Figure 8 The template for GROUPAO

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 13

 /* Merge the data with the data cuts */

 C = JOIN RC BY id, RD BY id;
 /* Group the duplicates */

 G = GROUP C on all data fields;
 /* Generate the data with a minimum cut ID */

 XD = FOREACH G GENERATE data fields, min(RD.id);
 /* Generate the data cuts */

 XC = FOREACH G GENERATE min(RD.id), RC.ref;
 /* Advice is not changed */
 XA = RA;

The template is illustrated in Figure 9.
As an example, consider computing distinct cities. First the subscriber names are

generated yielding three tuples. Next the DISTINCT transformation is applied, yielding two
tuples in the result (Logan and Ogden). The advice for the Logan tuples remains as three
distinct perspectives. The result is shown in Table 8.

3.2.4 UNION
In a UNION transformation, the tuples in each relation are put into a single bag. The union
does not eliminate duplicates.

 X = UNION R, S;

The aspect-oriented union, UNIONAO, similarly combines the advice and data cuts
(assuming that the ids and references are disjoint).

 XD = UNION RD, SD;

 /* Repeat for each level of advice */

 XC = UNION RC, SC;

 XA = UNION RA, SA;

3.3 The Example Revisited

We return to the example query of Section 2.1. Assume that we have a single security
aspect. The aspect-oriented version of the program is given below.

 A = LOAD AO 'subscribers' USING PigStorage()
 AS (name: chararray, city: chararray, amo unt:int, id:int);

XD

RD

XC

RC

XA

RA

JOIN …

C

GROUP …

R

X

FOREACH …

G

FOREACH …

XD

RD

XC

RC

XA

RA

JOIN …

C

GROUP …

R

X

FOREACH …

G

FOREACH …

Figure 9 The pattern for DISTINCT AO

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 14

 B = GROUP AO A BY dept;
 C = FOREACH B GENERATE AO dept, COUNT(B.name);
 DUMPAO C;

The aspect-oriented behavior is woven into the program using the templates described
in this section, yielding the following Pig Latin program.

 A_D = LOAD 'subscribers.data' USING PigStorage()
 AS (name: chararray, city: chararray,amou nt:int, id:chararray);
 A_C = LOAD 'subscribers.cuts' USING PigStorage()
 AS (id: chararray, ref: chararray);
 A_A = LOAD 'subscribers.advice' USING PigStorage()
 AS (ref: chararray, sec: int);

 /* Merge the data with the cuts and advice */
 B = JOIN A_D BY id, A_C BY id;
 C = JOIN B BY ref, A_A BY ref;
 /* Group on the data values */
 D = GROUP C USING dept;
 /* Stream through aspect-specific grouping */
 E = STREAM D THROUGH SECURITY-GROUP;
 /* Flatten it and regroup using the data and new id */
 F = FLATTEN E;
 B_D = GROUP F USING dept, id;
 /* Generate the data cuts */
 B_C = FOREACH F GENERATE id, ref;
 /* Generate the advice */
 B_A = FOREACH F GENERATE ref, sec;
 /* Generate the result */
 C_D = FOREACH B_D GENERATE dept, COUNT(B_D.name);
 C_C = B_C;
 C_A = B_A;
 DUMP C_D;

3.4 Program Aspects

A Pig Latin program can also be aspected. A program aspect represents a constraint on the
relations that are evaluated. Suppose that a program involves a relation, [RD, RC, RA], and
is aspected by a perspective consisting solely of advice, PA. Then the program aspect
transformation constrains RD to tuples that have advice consistent with the perspective
prior to evaluating the program. It does so as follows.

 /* First relate all of the advice, CROSS is Cartesi an product. */

 B = CROSS RA, PA;
 /* Generate new advice */

 XA = STREAM B THROUGH ADVICE-PROGRAM-ASPECT;
 /* Use new advice to remove extraneous data cuts */

 C = COGROUP RC BY ref, XA BY ref;

 XC = FOREACH C GENERATE C.id, C.ref;

Subscribers Data Cuts Security Advice
(Logan, 11, {(Maya, Logan, $20, 1),
 (Jose, Logan, $15, 2)})

 (11, J)

(J, Paid)

(Logan, 12, {(Jose, Logan, $15, 2)}) (12, H) (H, Lapsed)
(Ogden, 13, {(Knut, Ogden, $20, 3)}) (13, I) (I, Paid)

Table 9 Grouped subscribers

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 15

 /* Use the new data cuts to remove extraneous tuple s */

 D = COGROUP RD BY id, XC BY id;

 XD = FOREACH D GENERATE D.data, D.id;

Each advice tuple is passed through the advice-specific stream, which leaves the tuple
unchanged, trims the tuple, or removes it.

3.5 Complexity Analysis

The increased modeling power of aspect-oriented data comes with an increased cost. In
this section we analyze the worst-case time complexity, assuming that all of the aspect-
oriented transformations are implemented in Pig Latin (some advice-specific behaviors
are implemented as user-defined functions). Let D be the size of each data relation, C be
the size of a data cuts relation, and A be the size of an advice relation. Typically A will be
much smaller than D, and if there is a lot of default advice, C will also be much smaller
than D. Finally, let z be the number of different kinds of advice, e.g., z is three for the
examples in this paper, and let k be the number of levels of advice, e.g., in our examples, k
is 2. We assume that all binary operations, i.e., the various kinds of join, cost O(n∙m)
where n and m are the size of the operands, and unary operations, i.e., filtering, sampling,
generating, and grouping, cost O(n). Though this assumption overestimates the join cost,
which in practice (e.g, in a good hash join) can be nearly linear, the assumption is
appropriate for our complexity analysis.

To determine the cost of each aspect-oriented transformation, we summed the cost of
every Pig Latin transformation in a template. For example a FILTER AO, costs 1 FILTER +
k*(2 JOINs and 2 GENERATEs), which yields a total cost of O(D) + O(kDC + kzAC) + O(kC
+ kzA), or O(kDC + kzAC) by simplifying the equation. The analysis states that the cost of
FILTER AO is dominated by the cost of the k*2 JOINs, which concurs with the general rule of
thumb, that the cost of joins dominates the query evaluation cost.

The analysis is summarized in Table 10. Most of the operations include only the
additional cost of processing the cuts and advice, but five operations are much more
expensive: FILTER AO, JOIN AO, GROUPAO, SPLIT AO, and SAMPLEAO. We consider each in turn.
FILTER AO, increases the cost by eliminating extraneous cuts and advice (those that have
been filtered from the relation). But as we pointed out in Section 3.1.1. the extraneous cuts
and advice is harmless and does not need to be removed (other than for consistency),
lowering the cost to O(D). A similar speedup applies to SPLIT AO and SAMPLEAO. JOIN AO, is
expensive because the data has to be joined to the advice and the data cuts for each join.
This adds a factor of O(kDC + kzAC) to the cost. This cost can be amortized over several
joins by performing the join once and keeping the joined data in subsequent JOIN AO
transformations. Finally GROUPAO is inherently more expensive than GROUP, because data
must be grouped by both data and metadata, increasing both the number of groups and the
cost of computing each group.

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 16

4 Related Work

There is a little previous research on support for manifold kinds of metadata in database
management systems. Most closely related to this paper is our work on aspect-oriented
relational algebra [10],[11], and query languages for metadata annotating XML [8],[16].
This paper in contrast focuses on Pig Latin, though we take the same approach as our
relational algebra research by using data cuts and advice relations and the modeling of the
many operations that relational and Pig Latin share, e.g., joins, selection, and projection.
This paper makes three novel contributions. First we apply AOP to Pig Latin
transformations that differ from relational algebra transformations, such as grouping,
distinct, and sample, as well as to those that are familiar relational algebraic
transformations. Second we show how to model meta-metadata as advice tagging advice.

The database research community has researched models and support for specific kinds
of metadata, or in our terminology, specific kinds of aspects. One of the most important
and most widely researched kinds is temporal. Temporal extensions of every data model
exist, for instance, relational [25], object-oriented [26], and XML [12]. This paper
generalizes the work in relational temporal databases by proposing an infrastructure that
supports many kinds of advice, not just temporal advice. More specifically we extend
tuple-timestamped models [15], whereby the temporal metadata modifies the entire tuple.
Other tuple-level, relational model extensions to support security, privacy, probabilities,
uncertainty, and reliability have been researched, but no general framework or
infrastructure exists which can support all the disparate varieties.

There are several systems that have aspect-like support for combining different kinds
of metadata. Mihaila et al. suggest annotating data with quality and reliability metadata
and discuss how to query the data and metadata in combination [20]. The SPARCE
system wraps or super-imposes a data model with a layer of metadata [21]. The metadata
is active during queries to direct and constrain the search for desired information. Systems
that provide mappings between metadata (schema) models are also becoming popular
[2],[19]. Our approach differs from these systems by focusing on Pig Latin to support

Transform Pig
Latin

Aspect-oriented
Pig Latin

FILTER O(D) O(kDC + kzAC)
GENERATE O(D) O(D + kA + kC)
DISTINCT O(D) O(D + C)
JOIN O(D2) O(D2 + kDC + kzAC)
GROUP O(D) O(kDC + kzAC)
UNION O(D2) O(D2 + kC2 + kzA2)
SPLIT/SAMPLE O(D) O(kDC + kzAC)
LOAD/STORE/DUMP O(D) O(D + kC + kzA)
PROGRAM ASPECTS - O(kDC + kzAC)

Table 10 Complexity Analysis

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 17

AOP, and by building a framework whereby the behavior of individual data aspects can
be specified as “plug-in” components.

The information retrieval community has been very active in researching descriptive
metadata, in particular metadata that is used to classify knowledge [28]. The Dublin Core
is a commonly used classification standard [7]. Commercial and research systems [1] to
manage (descriptive) metadata collections have been developed. Methods to automatically
extract content-related metadata have also been researched [14],[18]. The focus of the
information retrieval research is on how to best use, manage, and collect metadata to
describe data to improve search [13]. In contrast, our focus is on modeling data aspects
which impose a semantics on the use of the data, i.e., they go beyond the simple,
descriptive tagging of data.

Finally, our goal in this paper, consistent with AOP and unlike many of the above
approaches, is to maximally reuse existing languages and systems. Hence we focus on
using Pig Latin itself to support aspect-oriented data by weaving the support for cross-
cutting concerns, expressed in Pig Latin, into Pig Latin programs.

5 Conclusions

This paper proposes adapting a popular software engineering design technique to the
management of data in a cloud computing context. Current cloud computing systems do a
poor job of evaluating cross-cutting concerns. Data has a wide variety of cross-cutting
concerns: time, security, reliability, privacy, quality, summaries, rankings, and
uncertainty. In this paper we adapted techniques from aspect-oriented programming
(AOP) to data. A data aspect combines advice (metadata and special semantics) with a
data cut (that pinpoints the data which the advice modifies). In our approach, the advice is
woven around the data enriching its meaning and use. Though specific data aspects have
individually been studied in detail, e.g., as a temporal database, data models and query
languages that combine many, disparate aspects have received little attention.

This paper presents a design for aspect-oriented Pig Latin. Pig Latin is a dataflow
language for analyzing data in the cloud. We proposed annotating or tagging Pig data
using data aspects. A data aspect binds advice (metadata) to data. The advice also has
semantics that must be observed when the data is used in a query. We showed how to
weave Pig Latin into a Pig Latin program to support cross-cutting concern data concerns.

6 Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grant No. 1144404 entitled “III: EAGER: Aspect-oriented Data Weaving”. Any opinions,

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 18

findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

7 References

[1] M. Baldonado, C.-C. Chang, L. Gravano, A. Paepcke, “Metadata for Digital Libraries, Architecture and
Design Rationale,” in ACM/IEEE JODL, pp. 47-56, 1997.
[2] P.. Bernstein, “Applying Model Management to Classical Meta Data Problems,” CIDR 2003, pp. 209-220.
[3] Deepavali Bhagwat, Laura Chiticariu, Wang Chiew Tan, and Gaurav Vijayvargiya, “An Annotation
Management System for Relational Databases,” in VLDB, 2004, pp. 900–911.
[4] R. Bose and James Frew. Lineage Retrieval for Scientific Data Processing: A Survey. ACM Computing
Surveys, 2005. 37(1): 1–28.
[5] P. Buneman, A. Chapman, and J. Cheney, “Provenance Management in Curated Databases,” in SIGMOD,
2006. Chicago, pp. 539–550.
[6] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and Wang Chiew Tan, Archiving Scientific Data. ACM
TODS, 2004. 29(1): 2–42.
[7] Dublin Core Metadata Initiative. At dublincore.org.
[8] C. Dyreson, M. Böhlen, and C. Jensen. “Capturing and Querying Multiple Aspects of Semi-structured
Data,” in VLDB 1999, pp: 290-301.
[9] C. Dyreson, R. T. Snodgrass, F. Currim, S. Currim and S. Joshi. Weaving temporal and reliability aspects
into a schema tapestry. Data and Knowledge Engineering, 63(3), December 2007, pp. 752-773.
[10] C. Dyreson and Omar Florez. “Data Aspects in a Relational Database,” in CIKM 2010, pp. 1373-1376.
[11] Curtis Dyreson. “Aspect-oriented Relational Algebra,” in EDBT 2011, pp, 377-388.
[12] Dengfeng Gao and Richard T. Snodgrass. “Temporal Slicing in the Evaluation of XML Queries”. In
VLDB, pp. 632-643, 2003.
[13] Hector Garcia-Molina, Diane Hillmann, Carl Lagoze, Elizabeth Liddy, and Stuart Weibel, “How
important is metadata?”, In ACM/IEEE-CS JODL, pp. 369-369, 2002.
[14] Luis Gravano and Panagiotis G. Ipeirotis and Mehran Sahami, “QProber: A system for automatic
classification of hidden-Web databases”. ACM Transactions on Information Systems. 21(1): 1-41, 2003.
[15] C. S. Jensen, M. Soo, and R. T. Snodgrass, “Unification of Temporal Data Models,” in ICDE, Vienna,
Austria, 1993, pp. 262-271.
[16] Hao Jin and Curtis Dyreson, “Supporting Proscriptive Metadata in an XML DBMS,” in DEXA Turin,
Italy, September 2008, pp. 479-492.
[17] Anastasios Kementsietsidis, Floris Geerts, and Diego Milano, “MONDRIAN: Annotating and Querying
Databases through Colors and Blocks,” in ICDE, 2006, p. 82.
[18] Dongwon Lee and Yousub Hwang, Extracting Semantic Metadata and its Visualization. ACM
Crossroads, 2001, 7(3): 19-27.
[19] Sergey Melnik, E. Rahm, E., and Phil A. Bernstein. “Rondo: A Programming Platform for Generic Model
Management”. In ACM SIGMOD 2003, pp. 193-204.
[20] George A. Mihaila, Louiqa Raschid, Maria-Esther Vidal. “Using Quality of Data Metadata for Source
Selection and Ranking,” in WebDB (Informal Proc.): 93-98. May 2000.
[21] Sudarshan Murthy, David Maier, Lois M. L. Delcambre, Shawn Bowers. “Superimposed Applications
using SPARCE,” in ICDE: 861. Boston, MA, USA, March 2004.
[22] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, “Pig Latin: a Not-so-Foreign Language for
Data Processing,” in SIGMOD Conference, 2008, pp. 1099-1110.
[23] Awais Rashid and N. Loughran, “Relational Data-base Support for Aspect-Oriented Programming,” in
NetObjectDays Conference. LNCS. Volume 2591, 2002, pp. 233-247.
[24] Awais Rashid, “Aspect-Oriented Programming for Database Systems,” in Aspect-Oriented Software
Development, 2004.
[25] Richard T. Snodgrass (Ed.). The TSQL2 Temporal Query Language. Kluwer, 1995. 629 pages.

Copyright @ 2012. Curtis E. Dyreson. All rights reserved.

 19

[26] Richard T. Snodgrass, “Temporal Object-oriented Databases: a Critical Comparison,” in Modern
Database Systems: the Object Model, Interoperability, and Beyond. Addison Wesley, 1995. pp. 386-408.
[27] R. Snodgrass. Developing Time-Oriented Database Applications in SQL. Kaufmann. 1999. 540 pages.
[28] Adrienne Tannenbaum. Metadata Solutions: Using Metamodels, Repositories, XML, and Enterprise
Portals to Generate Information on Demand. Addison-Wesley, 2001.
[29] Jennifer Widom, “Trio: A System for Integrated Management of Data Accuracy, and Lineage,” in CIDR,
2005. pp. 262–276.

